
BMS Institute of  Technology and Mgmt Department of  ISE Department of  ISE BMS  Institute of  Technology and Mgmt 

Design and Analysis of Algorithm 
18CS42 
4th Sem 

 



BMS Institute of  Technology and Mgmt Department of  ISE 

Table of Contents 

Module 
Number 

Module Title Page 
Number 

1 Introduction 1-78 

2 Divide and Conquer 79-137 

3 Greedy Method 138-187 

4 Dynamic Programming 188-257 

5 Backtracking 258-317 



BMS Institute of  Technology and Mgmt Department of  ISE 

MODULE – 1 

INTRODUCTION 
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Course Outcomes(COs):  

CO1 Gain knowledge on various algorithmic concepts to solve 
problems. 

CO2 Apply the basic knowledge of mathematical fundamentals for 
finding time complexity of recursive and non-recursive 
algorithms. 

CO3 Analyse various problems and choose appropriate algorithmic 
technique to use for solving real time problems. 

CO4 Design algorithms for various real time applications.  

CO5 Conduct investigation on societal problems and develop code 
using contemporary computing languages. 

CO6 Work in team and communicate effectively on various 
algorithmic techniques.  

At the end of the course, the students will be able to attain the following 

skills. 
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  Agenda 

 What is an Algorithm? 

 Algorithm Specification  

 Analysis Framework  

 Performance Analysis: Space complexity, Time complexity 

 Asymptotic Notations: Big-Oh notation (O), Omega notation (Ω),  

      Theta notation (Θ), and Little-oh notation (o) 

 Mathematical analysis of Non-Recursive  

 Recursive Algorithms with Examples . 

 Important Problem Types: Sorting, Searching, String processing, Graph Problems, 

Combinatorial Problems.  

 Fundamental Data Structures: Stacks, Queues, Graphs, Trees, Sets and Dictionaries.  
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     Learning Outcomes of Module -1 

Students will be able to 

 Representing real world problem into algorithmic notation. 

 Performance analysis of an algorithm.  

 Important problem types. 

 Fundamental Data structures.  
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What is an algorithm? 

Algorithmic: The sprit of computing – David Harel. 

 

Another reason for studying algorithms is their 
usefulness in developing analytical skills.  

 

Algorithms can be seen as special kinds of solutions to 
problems – not answers but rather precisely defined 
procedures for getting answers. 
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What is an algorithm? 

Recipe, process, method, technique, procedure, 
routine,… with the following requirements: 

1. Finiteness 
 terminates after a finite number of steps 

2. Definiteness 
 rigorously and unambiguously specified 

3. Clearly specified input 
 valid inputs are clearly specified 

4. Clearly specified/expected output 
 can be proved to produce the correct output given a valid input 

5. Effectiveness 
 steps are sufficiently simple and basic 

 6



BMS Institute of  Technology and Mgmt Department of  ISE Department of  ISE BMS  Institute of  Technology and Mgmt 

Algorithm 

• Can be represented in various forms 

• Unambiguity/clearness 

• Effectiveness 

• Finiteness/termination 

• Correctness 
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What is an algorithm? 

An algorithm is a sequence of unambiguous instructions 
for solving a problem, i.e., for obtaining a required 
output for any legitimate input in a finite amount of 
time. 
 
 

 

        “Computer”  

Problem 

Algorithm 

Input  Output 
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Why study algorithms? 

• Theoretical importance 

 
– the core of computer science 

 

• Practical importance 
 

– A practitioner’s toolkit of known algorithms 

 

– Framework for designing and analyzing algorithms for new problems 
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Euclid’s Algorithm 

Problem: Find gcd(m,n), the greatest common divisor of two 
nonnegative, not both zero integers m and n 

 

Examples:  gcd(60,24) = 12,    gcd(60,0) = 60,    gcd(0,0) = ?  

 

Euclid’s algorithm is based on repeated application of equality 

gcd(m,n) = gcd(n, m mod n) 

until the second number becomes 0, which makes the problem 

trivial. 

 

Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12 
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Two descriptions of Euclid’s algorithm 

Step 1  If n = 0, return m and stop; otherwise go to Step 2 

Step 2  Divide m by n and assign the value of the remainder to r 

Step 3  Assign the value of n to m and the value of r to n.  Go to 
        Step 1. 
    

while n ≠ 0 do             

 r ← m mod n 

    m← n    

    n ← r     

return m 
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Other methods for computing 
gcd(m,n) 

Consecutive integer checking algorithm 

Step 1  Assign the value of min{m,n} to t 

Step 2  Divide m by t.  If the remainder is 0, go to Step 3; 
        otherwise, go to Step 4 

Step 3  Divide n by t.  If the remainder is 0, return t and stop; 
        otherwise, go to Step 4 

Step 4  Decrease t by 1 and go to Step 2 

 

 

 

Is this slower than Euclid’s algorithm? 

How much slower?  
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Other methods for gcd(m,n)[cont.] 

Middle-school procedure 

Step 1  Find the prime factorization of m 

Step 2  Find the prime factorization of n 

Step 3  Find all the common prime factors 

Step 4  Compute the product of all the  common prime factors 
        and return it as gcd(m,n) 

 

Is this an algorithm? 

 

How efficient is it? 
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Sieve of Eratosthenes 
Input: Integer n ≥ 2 

Output: List of primes less than or equal to n 

for p ← 2 to n do  A[p] ← p 

for p ← 2 to sqrt(n) do   

   if A[p]  0  //p hasn’t been eliminated on previous  passes 
      j ← p* p 

          while j ≤ n  do 

                 A[j] ← 0  //mark element as eliminated   

                 j ← j + p 

 
Example: 2  3  4  5  6  7  8  9 10  11  12  13  14  15  16  17  18  19 20 

 

Output: 2  3  5  7  11  13  17  19 
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Fundamental steps in solving problems  
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Fundamental steps in solving problems  

Statement of the problem 

Development of mathematical model 

Design of the algorithm 

Correctness of the algorithm 

Analysis of algorithm for its time and space 
complexity 

Implementation 

Program testing and debugging 

Documentation 
16
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Important problem types 

• Sorting  
 

• Searching  
 

• String processing  
 

• Graph problems 
 

• Combinatorial problems 
 

• Geometric problems 
 

• Numerical problems 
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Graph Problems 

• Informal definition 

– A graph is a collection of points called vertices, some of 
which are connected by line segments called edges. 

• Modeling real-life problems 

– Modeling WWW 

– Communication networks 

– Project scheduling … 

• Examples of graph algorithms 

– Graph traversal algorithms 

– Shortest-path algorithms 

– Topological sorting 
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Linear Data Structures 

• Arrays 

– A sequence of n items of the same 
data type that are stored contiguously 
in computer memory and made 
accessible by specifying a value of the 
array’s index. 

• Linked List 

– A sequence of zero or more nodes 
each containing two kinds of 
information: some data and one or 
more links called pointers to other 
nodes of the linked list. 

– Singly linked list (next pointer) 

– Doubly linked list (next + previous 
pointers) 

 Arrays 

 fixed length (need preliminary 
reservation of memory) 

 contiguous memory locations 

 direct access 

 Insert/delete 

 Linked Lists 

 dynamic length 

 arbitrary memory locations 

 access by following links 

 Insert/delete 

… a1 an a2 . 
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Stacks and Queues 

• Stacks 

– A stack of plates  
• insertion/deletion can be done only at the top. 

• LIFO 

– Two operations (push and pop) 
• Queues 

– A queue of customers waiting for services  
• Insertion/enqueue  from the rear and deletion/dequeue from the 

front. 

• FIFO 

– Two operations (enqueue and dequeue) 
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Priority Queue and Heap 

  Priority queues (implemented using heaps) 

 A data structure for maintaining a set of elements, each associated 
with a key/priority, with the following operations 

 Finding the element with the highest priority 

 Deleting the element with the highest priority 

 Inserting a new element 

 Scheduling jobs on a shared computer 
9 

6 8 

5 2 3 

9 6 5 8 2 3 
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Graphs 

• Formal definition 
– A graph G = <V, E> is defined by a pair of two sets: a finite set V of 

items called vertices and a set E of vertex pairs called edges. 

• Undirected and directed graphs (digraphs). 

• What’s the maximum number of edges in an 
undirected graph with |V| vertices? 

• Complete, dense, and sparse graphs 
– A graph with every pair of its vertices connected by an edge is called 

complete, K|V| 

 1 2 

3 4 
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Graph Representation 

• Adjacency matrix 

– n x n boolean matrix if |V| is n. 

– The element on the ith row and jth column is 1 if there’s an edge from ith 
vertex to the jth vertex; otherwise 0. 

– The adjacency matrix of an undirected graph is symmetric. 

• Adjacency linked lists 

– A collection of linked lists, one for each vertex, that contain all the vertices 
adjacent to the list’s vertex. 

• Which data structure would you use if the graph is a 100-node star shape? 
    
      
0 1 1 1 
0 0 0 1 
0 0 0 1 
0 0 0 0 
 

2 3 4 

4 

4 
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Weighted Graphs 

• Weighted graphs 
– Graphs or digraphs with numbers assigned to the edges. 

 
1 2 

3 4 

6 

8 

5 

7 
9 
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Graph Properties -- Paths and Connectivity 

• Paths 

– A path from vertex u to v of a graph G is defined as a sequence of 
adjacent (connected by an edge) vertices that starts with u and ends 
with v. 

– Simple paths: All edges of a path are distinct. 

– Path lengths: the number of edges, or the number of vertices – 1. 
• Connected graphs 

– A graph is said to be connected if for every pair of its vertices u and v 
there is a path from u to v. 

• Connected component 

– The maximum connected subgraph of a given graph. 
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Graph Properties -- Acyclicity 

• Cycle 
– A simple path of a positive length that starts and ends 

a the same vertex. 

• Acyclic graph 
– A graph without cycles 

– DAG (Directed Acyclic Graph) 

1 2 

3 4 
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Trees 

• Trees 

– A tree (or free tree) is a connected acyclic graph. 

– Forest: a graph that has no cycles but is not necessarily connected. 
• Properties of trees 

 

– For every two vertices in a tree there always exists exactly one simple 
path from one of these vertices to the other. Why? 

• Rooted trees: The above property makes it possible to select an arbitrary vertex in a 
free tree and consider it as the root of the so called rooted tree. 

• Levels in a rooted tree. 

 |E| = |V| - 1 1 3 

2 4 

5 

1 

3 

2 

4 5 

rooted 
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Rooted Trees (I) 

• Ancestors 

– For any vertex v in a tree T, all the vertices on the simple path 
from the root to that vertex are called ancestors. 

•  Descendants 

– All the vertices for which a vertex v is an ancestor are said to be 
descendants of v. 

• Parent, child and siblings 

– If (u, v) is the last edge of the simple path from the root to 
vertex v, u is said to be the parent of v and v is called a child of 
u. 

– Vertices that have the same parent are called siblings. 
• Leaves 

– A vertex without children is called a leaf. 
• Subtree 

– A vertex v with all its descendants is called the subtree of T 
rooted at v. 
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Rooted Trees (II) 

• Depth of a vertex 
– The length of the simple path from the root to the vertex. 

• Height of a tree 
– The length of the longest simple path from the root to a leaf. 

 

1 

3 

2 

4 5 

h = 2 
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Ordered Trees 

• Ordered trees 

– An ordered tree is a rooted tree in which all the children of each vertex 
are ordered. 

• Binary trees 

– A binary tree is an ordered tree in which every vertex has no more than 
two children and each children is designated s either a left child or a 
right child of its parent. 

• Binary search trees 

– Each vertex is assigned a number. 

– A number assigned to each parental vertex is larger than all the 
numbers in its left subtree and smaller than all the numbers in its right 
subtree. 

• log2n  h  n – 1, where h is the height of a binary tree and n the size. 

9 

6 8 

5 2 3 

6 

3 9 

2 5 8 
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Computing time functions 

1 constant 

log n logarithmic 

n linear 

n log n n-log-n 

n2 quadratic 

n3 cubic 

2n exponential 

n! factorial 
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Values of some important functions as n   
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Order of growth  

• Most important: Order of growth within a 
constant multiple as n→∞ 

 

• Example: 
– How much faster will the algorithm run on computer that is 

twice as fast? 

 

– How much longer does it take to solve problem of double 
input size? 
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 Best-case, average-case, worst-case 

For some algorithms efficiency depends on form of input: 

 

• Worst case:    Cworst(n) – maximum over inputs of size n 

• Best case:        Cbest(n) –  minimum over inputs of size n 

• Average case:  Cavg(n) – “average” over inputs of size n 

 

– Number of times the basic operation will be executed on typical  
input. 

– NOT the average of worst and best case. 
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Asymptotic order of growth 

A way of comparing functions that ignores constant 
factors and small input sizes 

 
• O(g(n)): class of functions f(n) that grow no faster than g(n) 

 

• Θ(g(n)): class of functions f(n) that grow at same rate as g(n) 

 

• Ω(g(n)): class of functions f(n) that grow at least as fast as g(n) 
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Establishing order of growth using the definition 

Definition: f(n) is in O(g(n)) if order of growth of  f(n) ≤ order  of 
growth of g(n) (within constant multiple), 
i.e., there exist positive constant c and non-negative integer n0 
such that 

                 f(n) ≤ c g(n) for every n ≥ n0  

 

Example: 

•  5n+2 is O(n);   c= 7 and n0 = 1 

Note : The Upper Bound indicates that the function will be the worst case that it 

does not consume more than this computing time. 

36



BMS Institute of  Technology and Mgmt Department of  ISE Department of  ISE BMS  Institute of  Technology and Mgmt 

Big-oh 
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Establishing order of growth using the definition 
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Big-omega 
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Establishing order of growth using the definition 

Definition: f(n) is in Ɵ(g(n)) iff there exists three positive 
constants c1,c2 and n0  with the constraint that c1  g(n) ≤ f(n) 
≤ c2 g(n) for every n ≥ n0 . 

 

Example: 

• 3n+2 is Ɵ (n) 

• c1  g(n) ≤ f(n) ≤ c2 g(n)          for every n ≥ n0 

• 3 n ≤ 3n+2 ≤ 4 n         for every n0 = 2, c1 = 3, c2 = 4 
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Big-theta 
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       Properties of asymptotic order of growth 

• f(n)  O(f(n)) 
 

• f(n)  O(g(n)) iff g(n) (f(n))  
 

• If f (n)  O(g (n)) and g(n)  O(h(n)) , then f(n)  O(h(n))  
 
Note similarity with a ≤ b 
 

• If f1(n)  O(g1(n)) and f2(n)  O(g2(n)) , then 

                  f1(n) + f2(n)  O(max{g1(n), g2(n)})  
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Time efficiency of nonrecursive 

algorithms 
 

General Plan for Analysis 
  

• Decide on parameter n indicating input size 
 

• Identify algorithm’s basic operation 
 

• Determine worst, average, and best cases for input of size n 
 

• Set up a sum for the number of times the basic operation is 
executed 
 

• Simplify the sum using standard formulas and rules 
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Establishing order of growth using limits 

lim T(n)/g(n) 
=  

    0    order of growth of T(n)  <  order of growth of g(n)  

c > 0  order of growth of T(n) = order of growth of g(n)  

 ∞    order of growth of T(n) >  order of growth of g(n)  

Examples: 

• 10n                vs.             n2  

 

 

• n(n+1)/2        vs.             n2  

 

 

    n→∞ 
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Example: Sequential search 

Worst case   - O(n)                       Best case - Ω(n) 

 Average case – Θ(n/2) 
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Example 1: Maximum element 
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Analysis 

1. Input parameter : n 

2. Basic operation: 

    Comparison  

     A[i] > max 

 

 

3. 

 

 

 

4. 
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Example 2: Element uniqueness 
problem 
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Analysis 

1. Input parameter is input size n 

2. Basic operation: Comparison   A[i] == A[j] 

 

 

3. 

 

 

 

 

 

 

 

4. 

Є O(n2)  
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Example 3: Matrix 
multiplication 
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Analysis 

1. Input parameter is input size n2   X  n2 

2.   Basic operation: Comparison   C[i,j] == C[i,j] + A[i,k] * B[k,j] 

3.   

 

 

 

Є O(n3)  
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Selection Sort 

Algorithm SelectionSort (A[0..n-1]) 
//The algorithm sorts a given array by selection sort 

//Input: An array A[0..n-1] of orderable elements 

//Output: Array A[0..n-1] sorted in ascending order 

for i  0 to n – 2 do 

 min  i 

 for j  i + 1 to n – 1 do 

  if A[j] < A[min]   

   min  j 

 swap A[i] and A[min] 

Time efficiency: Θ(n2) comparisons (in the worst case) 
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Solve recurrence relations 

• X(n) = x(n-1) + 5 for n>1, x(1) = 0 

X(n) = x(n-1) + 5 

X(n) = x(n-2) + 5+5 

        = x(n-2) + 2 *5 

X(n) = x(n-3) + 3*5 

  

X(n) = x(n-n-1) + n-1 * 5 

         = x(1) + (n-1) * 5  

         = O(n-1)  = O(n)  
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Solve x(n) = 3x(n-1) for n>1, x(1) =4 

x(n) = 3x(n-1) 

        = 3[3x(n-2)] 

        = 32 x(n-2) 

        = 33 [x(n-3)] 

        = 34 [x(n-4)] 

         - 

         - 

        = 3n-1 [x(n-n-1)] 

         =3n-1 [x(1)] = 3n-1 [4]  = 4/3 * 3n 
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Solve 

1. X(n) = x(n/2) + n for n>1 

2. T(n) = T(n/2) + T(n/2) + 3 for n> 2 

     T(2) = 2, T(1) = 1 
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Plan for Analysis of Recursive 

Algorithms 
• Decide on  a parameter indicating an input’s size. 

 
• Identify the algorithm’s basic operation.  

 
• Check whether the number of times the basic op. is executed 

may vary on different inputs of the same size.  (If it may, the 
worst, average, and best cases must be investigated 
separately.) 
 

• Set up a recurrence relation with an appropriate initial 
condition expressing the number of times the basic op. is 
executed. 
 

• Solve the recurrence (or, at the very least, establish its 
solution’s order of growth) by backward substitutions or 
another method. 
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Example 1: Recursive evaluation of 
n! 

Definition: n ! = 1  2  … (n-1)  n  for n ≥ 1  and  
0! = 1 

Recursive definition of n!:  F(n) = F(n-1)  n  for n ≥ 
1  and   

                                               F(0) = 1 
 

 
 
 

Size: 
Basic operation: 
Recurrence relation: 
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      Solving the recurrence for M(n) 

M(n) = M(n-1) + 1,  M(0) = 0 

Refer Notes 
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Tower of Hanoi Problem 

• In this problem, we have n disks of different sizes and 
three pegs.  

• Initially, all the disks are on the first peg in order of 
size, the largest on the bottom and the smallest on 
top.  

• The goal is to move all the disks to the third peg, 
using the second one as an auxiliary if necessary.  

• We can move only one disk at a time, and it is 
forbidden to place a larger disk on top of a smaller 
one. 
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Example 2: The Tower of Hanoi 
Puzzle 

        
        
        
        
        
        
        
         

1

2

3

Recurrence for number of moves:  
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Solving recurrence for number of 
moves 
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       n

n-1 n-1

n-2 n-2 n-2 n-2

1 1

... ... ...
2

1 1

2

1 1

2

1 1

2

 
Tree of calls for the Tower of Hanoi 

Puzzle 
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Fibonacci numbers 

The Fibonacci numbers: 
0, 1, 1, 2, 3, 5, 8, 13, 21, …  

 

The Fibonacci algorithm (recursive ) 
Fib(n) 

{ 

If n<=1 

      return n 

Else  

Return F(n-1) + F(n-2)  
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• The recurrence equation for this problem is: 

T(n) = T(n-1) + T(n-2) for n>1 and the initial 
conditions are T(0) =0, T(1) = 1 

Solution to recurrence relation: 

T(n) = T(n-1) + T(n-2) 

T(n) –T(n-1) –T(n-2) = 0 

This is of the form ax(n) +bx(n-1) +cx(n-2) =0 

Which is a homogeneous second order linear 
relation with constant co-efficients. 66
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Little oh Notation (o) 

• The asymptotic upper bound provided by O-
notation may or may not be asymptotically 
tight. The bound 2n2 =  O(n2) is asymptotically 
tight but the bound 2n = o(n2) is not. 

• We use o-notation to denote an upper bound 
that is not asymptotically tight 

• f(n) = o(g(n)); f(n) is equal to the little oh of 
g(n), iff f(n) < c, g(n) for any +ve constant c>0, 
no>0 and n>no   
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Establishing order of growth using limits 

lim T(n)/g(n) 
=  

    0    order of growth of T(n)  <  order of growth of g(n)  

c > 0  order of growth of T(n) = order of growth of g(n)  

 ∞    order of growth of T(n) >  order of growth of g(n)  

Examples: 

• 10n                vs.             n2  

 

 

• 5n + 2        vs.             n  

 

 

    n→∞ 
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Property of the Asymptotic Notations 

1. Theorem :If t1(n) Є O(g1(n)) and t2(n) Є 
O(g2(n)), then  

    t1(n) + t2(n) Є O(max{g1(n), (g2(n)})   

 

2. Theorem: If f(n) = am nm + - - - - + a1 n + a0 and 
am >0, then f(n) = O(nm) 
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Brute Force 

A straightforward approach, usually based directly on the 
problem’s statement and definitions of the concepts involved 

 

Examples: 

1.  Computing an (a > 0, n a nonnegative integer) 

 

2. Computing n! 

 

3.  Multiplying two matrices 

 
4. Searching for a key of a given value in a list 
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Brute-Force Sorting Algorithm 

Selection Sort   Scan the array to find its smallest element and 
swap it with the first element.  Then, starting with the second 
element, scan the elements to the right of it to find the 
smallest among them and swap it with the second elements.  
Generally, on pass i (0  i  n-2), find the smallest element in 
A[i..n-1] and swap it with A[i]: 
 
 A[0]     .   .   .    A[i-1]  |  A[i],  .   .   .  , A[min], .   .   ., A[n-1]         

        in their final positions 

 

Example: 7   3   2   5 

73



BMS Institute of  Technology and Mgmt Department of  ISE 

Analysis of Selection Sort 

Time efficiency: 

 

In place: 

 

Stability:  

Θ(n^2) 

Yes 

yes 
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Brute-Force String Matching 

• pattern: a string of m characters to search for 

• text: a (longer) string of n characters to search in 

• problem: find a substring in the text that matches the pattern 

Brute-force algorithm 

Step 1  Align pattern at beginning of text 

Step 2  Moving from left to right, compare each character of 
       pattern to the corresponding character in text until 

• all characters are found to match (successful search); or 

• a mismatch is detected 

Step 3  While pattern is not found and the text is not yet 
       exhausted, realign pattern one position to the right and 
       repeat Step 2 
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Examples of Brute-Force String Matching  

1. Pattern:      001011                                                                                 
Text: 10010101101001100101111010  
                                         

2. Pattern: happy                                                                                       
Text: It is never too late to have a 

happy childhood. 
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Pseudocode and Efficiency   

Time efficiency: Θ(mn) comparisons (in the worst case) 
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Brute-Force Strengths and 
Weaknesses 

• Strengths 
– wide applicability 

– simplicity 

– yields reasonable algorithms for some important problems 
(e.g., matrix multiplication, sorting, searching, string 
matching)  
 

• Weaknesses 
– rarely yields efficient algorithms  

– some brute-force algorithms are unacceptably slow  

– not as constructive as some other design techniques 
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MODULE – 2 

 

DIVIDE AND CONQUER 
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Divide-and-Conquer 

The most-well known algorithm design strategy 

1. Divide instance of problem into two or more 
smaller instances 

2. Solve smaller instances recursively 

3. Obtain solution to original (larger) instance by 
combining these solutions 
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Divide and conquer involves three steps, 
at each level of recursion. 

• Divide: Divide the problem into a number of 
sub problems 

• Conquer: Conquer the sub problems by 
solving them recursively. If the sub – problem 
sizes are small enough, then solve the sub-
problem in a straight forward manner. 

• Combine: combine the solutions to the sub-
problems to get the solution to the original 
problem. 
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Divide-and-Conquer Technique (cont.) 

subproblem 2  

of size n/2 

subproblem 1  

of size n/2 

a solution to  

subproblem 1 

a solution to 

the original problem 

a solution to  

subproblem 2 

a problem of size n 
           (instance) 

In general leads to a 

recursive algorithm! 

T(n) = a T(n/b) + f (n)    

 

where f(n)  (nd),   d  0 
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Divide-and-Conquer Examples 
• Sorting: merge sort and quicksort 

• Finding min and max element in an array  

• Binary search  

• Multiplication of large integers 

• Matrix multiplication: Strassen’s algorithm 
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General Divide-and-Conquer Recurrence 

T(n) = aT(n/b) + f (n)   where f(n)  (nd),   d  0 

 

 

Master Theorem:    If a < bd,    T(n)  (nd)  

                                  If a = bd,     T(n)  (nd log n)  

                                  If a > bd,     T(n)  (nlog b a 
)  

 

Note: The same results hold with O instead of . 

 

Examples: T(n) = 4T(n/2) + n    T(n)  ? 

                   T(n) = 4T(n/2) + n2   T(n)  ? 

                   T(n) = 4T(n/2) + n3   T(n)  ? 

 

(n^2) 

(n^2log n) 

(n^3) 
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Merge Sort Algorithm 
Mergesort(low, high) 
//Given an array A of n elements. This algorithm sorts the elements in 
//ascending order. The variables low and high are used to identify the 
//positions of first and last element in each partition. 

1. If (low< high) 

2.     mid = (low+high)/2; 

3.     Mergesort (low,mid); 

4.    Mergesort(mid+1,high); 

5.    Merge(low,mid,high); 

6. End if 

7.    Exit 
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Merge Algorithm 
Merge(low, mid, high) 
// The variables low, mid, and high are used to identify the 
portions of elements in each partition. 

1. Initialize i=low, j= mid+1, h=low; 

2.        while ((h <= mid) && (j <= high)) 

3.        if (a[h] < a[j]) 

            b[i++] = a[h++]; 

            else 

            b[i++] = a[j++]; 

86



BMS Institute of  Technology and Mgmt Department of  ISE Department of  ISE BMS  Institute of  Technology and Mgmt 

Cont… 

4.        if (h > mid) 

                 for(k = j; k <= high; k++) 

                          b[i++] = a[k]; 

           else 

                  for (k = h; k <= mid; k++) 

                          b[i++] = a[k]; 

5.         for (k = low; k <= high; k++) 

            a[k] = b[k]; 
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Mergesort 
• Split array A[0..n-1] into about equal halves and make 

copies of each half  in arrays B and C 

• Sort arrays B and C recursively 

• Merge sorted arrays B and C into array A as follows: 
 

– Repeat the following until no elements remain in one of the arrays: 

• compare the first elements in the remaining unprocessed portions 
of the arrays 

• copy the smaller of the two into A, while incrementing the index 
indicating the unprocessed portion of that array  

– Once all elements in one of the arrays are processed, copy the 
remaining unprocessed elements from the other array into A. 
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Mergesort Example 

8  3  2  9  7  1  5  4

8  3  2  9 7  1  5  4

8  3  2  9 7 1 5  4

8 3 2 9 7 1 5 4

3  8 2  9 1  7 4  5

2  3  8  9 1  4  5  7

1  2  3  4  5  7  8   9

The non-recursive 

version of Mergesort 

starts from merging 

single elements into 

sorted pairs. 
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Analysis of Mergesort 
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• All cases have same efficiency: Θ(n log n)  

• Number of comparisons in the worst case is 
close to theoretical minimum for comparison-
based sorting:  
                   log2 n!   ≈    n log2 n  - 1.44n 

• Space requirement: Θ(n) (not in-place) 

• Can be implemented without recursion 
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Quicksort 
• Select a pivot (partitioning element) – as the first element 

•  
 
 
 

 

 

 

• Exchange the pivot with the last element in the first (i.e., ) 
subarray — the pivot is now in its final position 

• Sort the two subarrays recursively 

• Note : Invented by  

 

p 

A[i]p A[i]p 

p 

A[i]p A[i]p 

i j 
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Quick Sort Algorithm 

Quick sort(low, high) 

// A is an array of elements. 

// The variables low and high are used to identify the positions of first and  

// last elements in each partition. 

If(low< high) then 

    J= partition(low, high) 

    Quick sort( low, j-1) 

    Quick sort(j+1, high) 

End if 

Exit 
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Partition Algorithm 
Partition(low, high) 

//This procedure partitions the element into two lists and places the pivot 
//element into a appropriate place. Low = first element of the array, high = 
//last element of the array, a[low] = pivot. 

Step 1. Set pivot = a[low]; 

      i = low +1; 

      j = high; 

Step 2. Repeat step 3 while (a[i] < pivot && i < high) 

Step 3. i++; 

Step 4. Repeat step 5 while (a[j] > pivot) 

Step 5. j--; 

Step 6. If(i<j) 

             swap a[i] and a[j] 

             go to step 2 

            else 

            swap a[j] and pivot 

Step 7. Return (j) 
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Quicksort Example 

5   3   1   9   8   2   4   7 

 2  3  1  4  5  8  9  7 

1  2  3  4  5  7  8  9 

1  2  3  4  5  7  8  9 

1  2  3  4  5  7  8  9 

1  2  3  4  5  7  8  9 
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Analysis of Quicksort 
• Best case: split in the middle — Θ(n log n)  

• Worst case: sorted array! — Θ(n2)  

• Average case: random arrays — Θ(n log n) 

 

• Improvements: 
– better pivot selection: median of three partitioning  

– switch to insertion sort on small subfiles 

– elimination of recursion 

These combine to 20-25% improvement 

 

• Considered the method of choice for internal sorting of large 
files (n ≥ 10000) 

 

T(n) = T(n-1) + Θ(n) 
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Binary Search 
Algorithm Binary_Search( A[0…n-1], Key) 
Input: Given an array of n elements in sorted order and key is an element to be 

searched. 
Output: Returns the position of key element, if successful and returns  -1 

otherwise. 
1. Set first = 0, last = n-1 
2. While (first < = last) 
        mid = (first +last) / 2 
        if (key == A[mid]) 
            return  (mid+1); // successful 
        else if ( key < A[mid] ) 
                last = mid – 1 
         else  
                first = mid+1 
         end while 
3.     return  -1 // unsuccessful 
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Analysis 

Best Case: Best case occurs, when we are 
searching the middle element itself. In that case, 
total number of comparisons required is 1. there 
fore best case time complexity of binary search 
is Ω(1). 

Worst Case: Let T(n) be the cost involved to 
search ‘n’ elements. Let T(n/2) be the cost 
involved to search either left part or the right 
part of an array.  
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Analysis 

T(n) =        a                     if  n = 1 

                  T(n/2) + b     otherwise  

 

T(n/2)  Time required to search either the left 
part or the right part of the array. 

b  Time required to compare the middle element.  

Where a and b are some positive integer constants. 

 T(n) = O(log 2n ) 
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Analysis 

Average Case: 

The average case occurs when an element is found  some where 
in the recursive calls, but not till the recursive call ends. 

The average number of key comparisons made by binary search 
is only slightly smaller than that in this worst case. 

T(n) = log 2n  

The average number of comparison in a successful search is  

T(n) = log 2n – 1 

The average number of comparison in a unsuccessful search is  

T(n) = log 2n + 1 
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Algorithm for straight forward maximum and 
minimum 

StraightMaxMin(a,n,max,min) 

// set max to the maximum and min to the minimum of a[1:n]. 

{ 

     max := min := a[1]; 

     for i := 2 to n do 

     { 

           if(a[i] > max) then max := a[i]; 

           if(a[i] < min) then min := a[i]; 

     } 

} 
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Analysis 

• This algorithm requires 2(n-1) element 
comparisons in the best, average, and worst 
cases.  

•  Now the Best case occurs when the elements 
are in increasing order. The number of 
element comparisons is n-1.  

• The worst case occurs when the element are 
in decreasing order. In this case number of 
comparisons is 2(n-1). 
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Finding maximum and minimum using 
divide and conquer technique 

Algorithm max_min(i, j, max, min) 

{ 

// Input: a[1:n] is a global array. Parameters i and j 
are integers, 1<=i <= j<= n.  

// output: to set max and min to the largest and 
smallest values in a[i: j], respectively.  

If (i == j) then // Small(P) 

{ max = min  A[i]; 

} 
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else if ( i =j-1) then  // Another case of Small(P) 

{ 

       if (A[i] < A[j]) then 

        { 

            max  A[j] 

            min  A[i] 

         } 

         else 

         { 

          max  A[i] 

          min  A[j] 

} 
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else 

{ 

  // if P is not small, divide P into sub problems.     // 
Find where to split the set 

 mid := (i+j)/2; 

 // Solve the sub problems. 

max_min(i,mid,max,min); 

max_min(mid+1, j, max1,min1); 

// Combine the solutions 

  if( max < max1) then max := max1; 

  if( min > min1) then min:= min1; 

  } 

} 
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Analysis 
                   0                                           n=1 

T(n) =        1                                            n=2 

                  T(n/2) + T(n/2) + 2              n>2 

 

     When n is a power of two, n = 2k  for some positive integer k, then 

   T(n) = 2T(n/2) + 2 

           = 2T(2k-1) ) + 2 

           = 2(2T(2k-2) + 2) + 2 

           = 22T(2k-2) + 22 + 2 

           = 23T(2k-3) + 23 + 22 + 2 

           . . . 

           = 2k-1 T(2k-(k-1)) + 2k-2 + 2k-1 + -  -  -  +  21 

           =  2k-1 + 2k-2 + -  -  -  +  21 

           = 2. (2k-1 – 1)/ 2-1  = O(n) 
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Multiplication of Large Integers  
Consider the problem of multiplying two (large) n-digit integers 
represented by arrays of their digits such as: 
 
A = 12345678901357986429   B = 87654321284820912836 
 
The grade-school algorithm: 

  a1  a2 …  an 

                 b1  b2 …  bn 

     (d10) d11d12 … d1n 

         (d20) d21d22 … d2n 

        … … … … … … …  
(dn0) dn1dn2 … dnn 

  
 
Efficiency: Θ(n2) single-digit multiplications 
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First Divide-and-Conquer 
Algorithm 

A small example: A  B where A = 2135 and B = 4014 

A = (21·102 + 35),  B = (40 ·102 + 14) 

So, A  B = (21 ·102 + 35)  (40 ·102 + 14)  

      = 21  40 ·104  + (21  14 + 35  40) ·102 + 35  14 
 

In general, if A = A1A2 and B = B1B2   (where A and B are n-digit,  

A1, A2, B1, B2 are n/2-digit numbers), 

A  B = A1  B1·10n  + (A1  B2 + A2  B1) ·10n/2 + A2  B2 

 

Recurrence for the number of one-digit multiplications M(n):  

                             M(n) = 4M(n/2),   M(1) = 1 
Solution: M(n) = n2  
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Second Divide-and-Conquer 
Algorithm 

A  B = A1  B1·10n  + (A1  B2 + A2  B1) ·10n/2 + A2  B2 

 

The idea is to decrease the number of multiplications from 4 to 3:   

   (A1 + A2 )  (B1 + B2 ) = A1  B1 + (A1  B2 + A2  B1) + A2  B2, 

 
I.e., (A1  B2 + A2  B1) = (A1 + A2 )  (B1 + B2 ) - A1  B1 - A2  B2,  
which requires only 3 multiplications at the expense of (4-1) extra 
add/sub. 

 

Recurrence for the  number of multiplications M(n): 

                             M(n) = 3M(n/2),   M(1) = 1 

Solution: M(n) = 3log 2n = nlog 23 ≈ n1.585  

What if we count 

both multiplications 

and additions? 
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Example of Large-Integer 
Multiplication  

  
2135  4014 

= (21*10^2 + 35) * (40*10^2 + 14) 

= (21*40)*10^4 + c1*10^2 + 35*14 

where c1 = (21+35)*(40+14) - 21*40 - 35*14, and 

21*40 = (2*10 + 1) * (4*10 + 0) 

           = (2*4)*10^2 + c2*10 + 1*0 

where c2 = (2+1)*(4+0) - 2*4 - 1*0, etc. 

 

This process requires 9 digit multiplications as opposed to 16. 
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Matrix Multiplication 

• Brute-force algorithm 

 

    c11    c12               a11   a12                     b11   b12 

                                   =                           * 

    c21   c22               a21   a22                      b21   b22 

 

 

   a11 * b11  + a12 * b21   a11 * b12  + a12 * b22  

                             =                  

                               a21 * b11  + a22 * b21   a21 * b12  + a22 * b22  

8 multiplications 

4 additions 
Efficiency class in general:  (n3) 
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Strassen’s Matrix Multiplication 

• Strassen’s algorithm for two 2x2 matrices (1969): 

c11      c12               a11    a12              b11    b12 

                             =                          * 

c21      c22               a21    a22              b21    b22 

  

               C1 = E   + I  + J - G                C2 =  D + G 

                             =                    

                             C3 = E + F                                     C4 = D   + H  + J - F  
D = A1(B2 – B4)  

E = A4( B3 – B1)  

F = (A3 + A4) B1  

G = (A1 + A2) B4 

H = (A3 – A1) (B1 + B2) 

I =  (A2 – A4) (B3 +B4) 

J = (A1 +A4)(B1 +B4) 

 

 

 

 

 

 

 

 

 

 

                            

7 multiplications 

18 additions 
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Strassen’s Matrix Multiplication 

A =                B =  

 

A1 = 1, A2 =2, A3 = 3, A4 = 4 

B1 = 1, B2 = 2, B3 = 2, B4 = 2 

1. D = A1(B2 – B4)  = 1(1 – 2) = -1 

2. E = A4(B3-B1) = 4(2-1) = 4 

3. F = (A3 + A4) B1 = (3+4)1 = 7 

4. G = (A1 + A2)B4 = (1+2)2 = 6 

 

1      2 
3         4 

1      1 
2      2 

113



BMS Institute of  Technology and Mgmt Department of  ISE Department of  ISE BMS  Institute of  Technology and Mgmt 

5. H = (A3 – A1) (B1 + B2) = (3-1)(1+1) = 4 

6. I = (A2 – A4)(B3+B4) = (2-4)(2+2) = -8 

7. J = (A1+A4)(B1+B4) = (1+4)(1+2) = 15 

 

C1 = E +I+J-G = 4+(-8) +15-6 = 5 

C2 = D + G = -1 +6 = 5                  C  = 

C3 = E + F = 4 + 7 = 11 

C4 = D + H + J – F = -1 +4 +15 -7 = 11 

 

5        5 
11        11 
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Strassen’s Matrix Multiplication 
    Strassen observed [1969] that  the product of two 

matrices can be computed in general as follows: 
 

C00    C01                A00    A01                B00    B01 

                              =                             * 

C10    C11                A10    A11                B10    B11 

 

 

                            M1   + M4  - M5 + M7                                M3 + M5  

                             =                    

                            M2 + M4                                                    M1   + M3  - M2 + M6  
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Formulas for Strassen’s Algorithm 
M1 = (A00 + A11)  (B00 + B11) 

 

M2 = (A10 + A11)  B00 

 

M3 = A00  (B01 - B11) 

 

M4 =  A11  (B10 - B00) 

 

M5 = (A00 + A01)  B11 

 

M6 = (A10 - A00)  (B00 + B01) 

 

M7 = (A01 - A11)  (B10 + B11) 
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1 2 

3 4 

A00 A01 

A10 A11 

1 1 

2 2 

B00 B01 

B10 B11 

M1 = (A00 + A11)  (B00 + B11) 
      = (1 + 4) * (1+2)  = 15 

M2 = (A10 + A11)  B00 

      = (3 + 4) * 1  = 7 

M3 = A00  (B01 - B11) 
      = 1 * (1 - 2)  = -1 

M4 =  A11  (B10 - B00) 
      = 4 * (2 - 1)  =  4 

M5 = (A00 + A01)  B11 
      = (1 + 2) * 2  =  6 

M6 = (A10 - A00)  (B00 + B01) 
      = (3 - 1) * (1 + 1) = 4 

M7 = (A01 - A11)  (B10 + B11) 
      = (2 - 4) * (2 + 2) = -8 

M1   + M4  - M5 + M7 M3 + M5 

M2 + M4 M1   + M3  - M2 + M6 

C00 C01 

C10 C11 

5 5 

11 11 

= 
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2 1 

3 4 

A00 A01 

A10 A11 

5 2 

1 2 

B00 B01 

B10 B11 

M1 = (A00 + A11)  (B00 + B11) 
      = (2 + 4) * (5+2)  = 42 

M2 = (A10 + A11)  B00 

      = (3 + 4) * 5  = 35 

M3 = A00  (B01 - B11) 
      = 2 * (2 - 2)  = 0 

M4 =  A11  (B10 - B00) 
      = 4 * (1 - 5)  =  -16 

M5 = (A00 + A01)  B11 
      = (2 + 1) * 2  =  6 

M6 = (A10 - A00)  (B00 + B01) 
      = (3 - 2) * (5 + 2) = 7 

M7 = (A01 - A11)  (B10 + B11) 
      = (1 - 4) * (1 + 2) = -9 

M1   + M4  - M5 + M7 M3 + M5 

M2 + M4 M1   + M3  - M2 + M6 

C00 C01 

C10 C11 

11 6 

19 14 

= 
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Solve  
1 0 2 1 
4 1 1 0 
0 1 3 0 
5 0 2 1 

 

0 1 0 1 
2 1 0 4 
2 0 1 1 
1  3 5 0 

1 0 
4 1 

2 1 
1 0 

0 1 
5 0 

3 0 
2 1 

0 1 
2 1 

0 1 
0 4 

2 0 
1 3 

1 1 
5 0 

A1 A2 

A3 A4 

B1 B2 

B3 B4 

A  = B  = 
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1 0 
4 1 

0 1 
0 4 

1. D = A1 (B2 – B4) 

- 
1 1 
5 0 

1 0 
4 1 

* 

* 
-1 0 
-5 4 

-6   0 
-9   4  

2. E = A4 (B3 – B1) 
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Analysis of Strassen’s Algorithm 

If n is not a power of 2, matrices can be padded with zeros. 

 

Number of multiplications: 

                                 M(n) = 7M(n/2),   M(1) = 1 

M(n) = 7M(2 k-1) 

          = 7[7M(2 k-2)] = 7 2 M(2 k-2)]  

                                   = 7 k M(2 k-k)] = 7 k  (1)  

 

Solution: M(n) = 7log 
2

n = nlog 
2

7 ≈ n2.807    vs.  n3 of brute-force alg. 
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Advantages and Disadvantages 
• Difficult problems is broken down into sub 

problems and each sub problem is solved 
independently. 

• It gives efficient algorithms like quick sort, 
merge sort, streassen’s matrix multiplication. 

• Sub problems can be executed on parallel 
processor. 

Disadvantage 

• It makes use of recursive methods and the 
recursion is slow and complex. 
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Decrease-and-Conquer 

The decrease and conquer technique is almost similar to the 
divide and conquer technique, but instead of dividing the 
problem into size n/2, it is decremented by a constant or 
constant factor. 

There are three variations of decrease and conquer 

•  Decrease by a constant 

•  Decrease by a constant factor 

•  Variable size decrease 

The problems can be solved either top down (recursively) or 
bottom up ( without  recursion) 
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Decrease by a constant  

• In this type of variation, the size of an instance 
is reduced by the same constant ‘1’ on each 
iteration. So, if a problem is of size ‘n’ , then a 
sub problem of size ‘n-1’ is solved first but 
before a sub sub problem of size ‘n-2’ is solved 
and so on. 
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Decrease by a constant  

……. 

……. 

Problem of Size n 

Sub Problem of Size (n – 1) 

Solution to sub problem 

Solution to the Original 
Problem 

1 2 n 

1 n-1 

  …. 

 (n -2) 
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Decrease by a constant  

Example: Consider a problem for computing a n 
where n is a positive integer exponent 

Let f(n) = a n 

 a n = a n-1 . a 

       = a n-2 . a . a 

       = a n-3 . a . a . a 

       = a. a. a. a. . . n times 

F(n)  =   f(n-1 ) . a  if n> 1 
    a    if n = 1 

The above definition is a recursive definition i.e, a top down approach 

Eg: Insertion sort, Depth First Search, Breath First Search, 

Topological Sort 
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Decrease by a constant factor 

• In this type of variation, the size of instance is 
reduced by a constant factor on each iteration 
(most of the case it is 2). 

• So, if a problem of size ‘n’ is to be solved then 
first the sub problem of size n/2 is to be solved 
which in-turn requires the solution for the sub 
sub problem n/4 and so on. 
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Decrease by a constant factor  

……. 

……. 

Problem of Size n 

Sub Problem of Size (n / 2) 

Solution to sub problem 

Solution to the Original 
Problem 

1 2 n 

1 n/2 

 

(n / 4) 

   - - - 
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Decrease by a constant factor  

Example: Consider a problem for computing an 

As the problem is to be halved each time (Since 
the constant factor is 2, to solve a n, first solve an/2 

, but before solve an/4 and so on. 

 

an  =     (an/2 ) 2    if n is even and > 1 

             (an-1/2 ) 2   if n is odd and > 1 

             a            if n = 1 
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The efficiency of this variation i.e decrease by a 
constant factor is O(log n) because, the size is 
reduced by at least one half at the expense of 
no more than two multiplications on each 
iteration 

Eg: Binary search and the method of bisection, 
Fake coin problem 

Decrease by a constant factor  
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Variable size decrease 

In this type, the reduction in the size of the 
problem instance is varied from one iteration to 
another. 

gcd (m,n) =   gcd (n, m mod n)    if n> 0 
                           m                         if n=0  

Eg: Euclid’s algorithm  for computing 
GCD of two nos. 

Eg: Computing a median, Interpolation Search 
and Binary Search Tree 
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DAGs and Topological Sorting 
A dag: a directed acyclic graph, i.e. a directed graph with no 
(directed) cycles 
 
 
 
 
 
 

 
 
 
 

Arise in modeling many problems that involve prerequisite 
constraints (construction projects, document version control) 
 

Vertices of a dag can be linearly ordered so that for every edge its 
starting vertex is listed before its ending vertex (topological 
sorting).  Being a dag is also a necessary condition for topological 
sorting to be possible.  

a b 

c d 

a b 

c d 

a dag not a dag 
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Topological Sorting Example 
Order the following items in a food chain 

 

fish 

human 

shrimp 

sheep 

wheat plankton 

tiger 
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DFS-based Algorithm 

DFS-based algorithm for topological sorting 

– Perform DFS traversal, noting the order vertices 
are popped off the traversal stack 

– Reverse order solves topological sorting problem 

– Back edges encountered?→ NOT a dag! 
Example: 

 

 

  

 

 

 
Efficiency:  The same as that of DFS. 

b a 

e f 

c d 

g h 
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Source Removal Algorithm 

Repeatedly identify and remove a source (a vertex with no 
incoming edges) and all the edges incident to it until either no 
vertex is left or there is no source among the remaining 
vertices (not a dag) 

Example: 1 

 
 

Efficiency: same as efficiency of the DFS-based algorithm, but how would you 
identify a source? How do you remove a source from the dag? 

e 

b 

e f 

c d 

g h 

a 

d 

c 

b 

a 

Example 2 
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Source Removal Algorithm 

Topological Sort(G) 

1. Find the indegree INDG(n) of each node n  of 
G. 

2. Put in a queue Q all the nodes with zero 
indegree. 

3. Repeat step 4 and 5 until G becomes empty. 

4. Repeat the element n of the queue Q and 
add it to T (Set Front = Front +1). 
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Source Removal Algorithm 

5. Repeat the following for each neighbour, m of 
the node n 

    a) Set INDEG(m) = INDG(m)-1 

    b) If INDEG(m) = 0 then add m to the rear end  

        of the Q. 

6. Exit. 

 
Note: For Problems refer class notes 
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MODULE – 3 

 

GREEDY METHOD 
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Greedy Method 
• Approach for Solving problem 

• Used for Solving Optimization Problem 

• Optimization Problem : Problems which demands 

minimum/maximum results 

• Example: 

 

                       A                         B  
        

  S1     S2    S3    S4   S5…… 

        

     

 

            There will be only one minimum solution 

12 hrs Minimum cost 

Optimal solution Feasible solutions 
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Strategies used for Optimization 
Problem 

• Greedy Method 

• Dynamic Programming 

• Branch and Bound 
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   Greedy Technique 

24-08-2020 4 

Greedy algorithms, construct a solution through a 
sequence of steps, each step expanding a partially 
constructed solution obtained so far, until a complete 
solution to the problem is reached.  

 feasible -it has to satisfy the problem’s constraints  

  locally optimal - it has to be the best local choice 

among all feasible choices available on that step 

   irrevocable - once made, it cannot be changed on 

subsequent steps of the algorithm  
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General method control abstraction 

Algorithm Greedy(a, n) 

// a[1..n] contains the ‘n’ inputs 

{ 

Solution := 0;      //Initialize the solution 
for i:= 1 to n do 

{ 

X : = Select(a); 

If Feasible(Solution, x) then 

Solution:= Union(Solution, x); 

} 

Return Solution; 

} 
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Applications of the Greedy Strategy 

• Optimal solutions: 
– change making for “normal” coin denominations 

– minimum spanning tree (MST) 

– single-source shortest paths  

– simple scheduling problems 

– Huffman codes 

• Approximations/heuristics: 
– traveling salesman problem (TSP) 

– knapsack problem 

– other combinatorial optimization problems 

 

143



Differences b/w Divide and conquer and greedy 
Method  
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Change-Making Problem 
• Problem Statement: Given coins of several denominations 

find out a way to give a customer an amount with fewest 

number of coins.   

• Example: if denominations are 1,5,10, 25 and 100 and the 

change required is 30, the solutions are,  

•  Amount :  30  

•  Solutions : 3 x 10  ( 3 coins )  

 6 x 5   ( 6 coins )     

 1 x 25 + 5 x 1 ( 6 coins )  

 1 x 25 + 1 x 5 ( 2 coins )  

The last solution is the optimal one as it gives us change only with 2 

coins.  145
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Change-Making Problem 

Given unlimited amounts of coins of denominations d1 > … >dn,  

give change for amount n with the least number of coins 

      

Solution: <1, 2, 0,  3> 

Example:  d1 = 25c,  d2 =10c,  d3 = 5c,  d4 = 1c  and  n = 48c 

 

Greedy solution is optimal for any amount and “normal’’ set of  

denominations 
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cashier’s Algorithm 

Algorithm coinchange() 

//Input: Denomination d[1] > d[2] > 
d*3+ … d*n+  

//Amount to obtain change – C 

// Output: The optimal number of 
coins for change of C, is stored in 
Coins[i] 

 
for i  1 to n do 

      { 

         Coins[i] = C/d[i]; 

         C = C mod d[i] 

       Print coins[i] 

      } 

 

{25,10,1}  for  30c 

 

147



BMS Institute of  Technology and Mgmt Department of  ISE Department of  ISE BMS  Institute of  Technology and Mgmt 

Change-Making Problem 

For example, d1 = 25c, d2 = 10c, d3 = 1c, and n = 30c 

Solution: <1, 0, 5> 

May not be optimal for all denominations 
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Knapsack Problem 
 (Fractional knapsack problem)  

Given n objects and a knapsack or bag. Object i has a 

weight wi and the knapsack has a  capacity   m. if the 

fraction Xi, 0<=Xi<=1, of object i is placed into the 

knapsack, then a profit of Pi*Xi is earned.  

The objective is to maximize the total profit earned. 

Since the knapsack capacity is m, we require the total 

weight of all chosen objects to be at most m. 
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Knapsack Problem - 1 

Obtain the optimal solution for the knapsack 

problem using greedy method given the 

following: 

M = 15 

n = 7 

p1,p2,p3,p4,p5,p6,p7 =    10,5,15,7,6,18,3 

w1,w2,w3,w4,w5,w6,w7= 2,3,5,7,1,4,1 
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There are several greedy methods to obtain the feasible solutions.  
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Profits =                         Solution Vector = (1, 0,1, 4/7,0,1,0)= (1, 0,1, 0.57,0,1,0) 

Optimal solution using this method is (x1, x2, x3,x4,x5,x6,x7) = (1, 0,1, 0.57,0,1,0) 

with profit = 47  
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Profits =                                    Solution Vector = (1, 1,4/5,0,1,1,1)= (1, 1,0.8,0,1,1,1) 

Optimal solution using this method is (x1, x2, x3,x4,x5,x6,x7) = (1, 1,0.8,0,1,1,1) 

   with profit = 54  

Optimal solution is not guaranteed using method 1 and 2 
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Profits =                                Solution Vector = (1, 2/3,1,0, 1,1,1)= (1, 0.67,1,0, 1,1,1) 

Optimal solution is (x1, x2, x3,x4,x5,x6,x7) = (1, 0.67,1,0, 1,1,1) 

with profit [1*10+0.67*5+1*15+0*7+1*6+1*18+1*3]= 55.34  

Weight=[1*2+0.67*3+1*5+0*7+1*1+1*4+1*1]=15 

This greedy approach always results optimal solution 
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Knapsack Problem 
 (Fractional knapsack problem)  

Given n objects and a knapsack or bag. Object i has a 

weight wi and the knapsack has a  capacity   m. if the 

fraction Xi, 0<=Xi<=1, of object i is placed into the 

knapsack, then a profit of Pi*Xi is earned.  

The objective is to maximize the total profit earned. 

Since the knapsack capacity is m, we require the total 

weight of all chosen objects to be at most m. 
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Knapsack problem 
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Knapsack Algorithm 

Algorithm Greedy Knapsack(m,n) 

//p[1:n] and w[1:n] contain the profits and weights respectively, of the n 

objects ordered such that p[i]/w[i] >= p[i+1]/w[i+1]. 

// m is the knapsack size and x[1:n] is the solution vector 

{ 

for i := 1 to n do x[i] := 0.0; //Initialize x 

U := m;//sack capacity 

for i:=1 to n do 

{ 

      if (w[i] > U) then break; // weight of an object is greater than sack capacity 

      x[i] := 1.0; U:=U-w[i]; 

} 

If(i<=n) then x[i]:=U/w[i]; 

} 

Analysis: Disregarding the time to initially sort the object, each 
of the above strategies use O(n) time 
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Problem - 2 

Obtain the optimal solution for the knapsack 

problem using greedy method given the 

following: 

M=40 , n=3 

w1,w2,w3 = 20,25,10 

p1,p2,p2 = 30,40,35 
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Job Sequencing with Deadline 

Given an array of jobs where every job has a deadline 
and associated profit, the job is to be finished before 
the deadline. It is also given that every job takes 
single unit of time. So the minimum possible deadline 
for any job is 1. the objective is to maximize total 
profit, provided only one job can be scheduled at a 
time. 
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For the following sequence of job, give the snapshot of 

execution which will achieve maximum profit. 

Jobs n= 5 

p1,p2,p3,p4,p5 = 20,15,10,1,6 

d1,d2,d3,d4,d5 =  2,  2,  1,  3,3 

 

Problem 1 
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Problem 1 

161



BMS Institute of  Technology and Mgmt Department of  ISE 
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Job Sequencing with Deadline 
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Minimum Spanning Tree (MST) 

Spanning tree of a connected graph G: a connected acyclic 
subgraph of G that includes all of G’s vertices 

c 

d 
b 

a 

6 

2 

4 

3 

1 

c 

d 
b 

a 

6 

4 1 

c 

d 
b 

a 

2 

3 

1 
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Minimum spanning tree of a weighted, connected graph G: a 
spanning tree of G of the minimum total weight 

Example: 

 

c 

d 
b 

a 

6 

2 

4 

3 

1 

c 

d 
b 

a 

6 

4 1 

c 

d 
b 

a 

2 

3 

1 

COST=11 COST=6 
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Minimum Cost spanning Tree 
algorithms 

• Prim’s algorithm 

• Kruskal’s algorithm 
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MST – Prim’s algorithm 
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Efficiency 

The time efficiency of depends on the data 
structures used for implementing the priority 
queue and for representing the input graph. 

Since we have implemented using weighted 
matrix and unordered array, the efficiency is 
O(|V2|). 

 If we implement using adjacency list and the 
priority queue for min-heap, the efficiency is 
O(|E|log|V|). 
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Kruskal’s algorithm 

 

 

Kruskal's algorithm finds MST of a weighted 

connected graph G=<V,E> as an acyclic subgraph 

with |V| - 1 edges. Sum of all the edges weight 

should be minimum. 

The algorithm begins by sorting the graph’s 
edges in increasing order of their weights.     

Then it scans this sorted list starting with the 
empty sub graph and it adds the next edge on 
the list to the current sub graph, if such an 
inclusion doesn’t create a cycle and simply 
skipping the edges. 
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Time complexity 

The crucial check whether two vertices belong to the 

same tree can be found out using union -find algorithms.   
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Shortest paths – Dijkstra’s 
algorithm 

 The Dijkstra’s algorithm finds the shortest path 
from a given vertex to all the remaining vertices 
in a diagraph.    

We have to find out the shortest path from a 
given source vertex ‘S’ to each of the 
destinations (other vertices ) in the graph. 

The constraint is that each edge has non-
negative cost. The length of the path is the sum 
of the costs of the edges on the path.  
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Example2 
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Dijkstra’s algorithm 
Dijkstra’s( s) 
// Finds shortest path from source vertex to all other vertices 
//Input: Weighted connected graph G=<V,E> with nonnegative 
weights and its vertices s 
//Output: The length of distance  of a shortest path from s to v 
{ 
1.  for i = 1 to n do // Intialize  
     S[i] = 0; 
     d[i] = a[s][i]; 
 
2. S[s] = 1; //Assume 1 as the source vertex 
    d[s] = 1; 
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Dijkstra’s algorithm 

3. for i = 1 to n do  
    { 
    Choose a vertex u in v-s such that d[u] is   
    minimum 
    S = s ꓴ  u 
          for each vertex v in v-s do 
                d[v] = min{ d[u], d[u]+c[u,v]}  
    } 
} 
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Key points on Dijkstra’s 
algorithm 

 Doesn’t work for graphs with  negative weights 
(whereas Floyd’s algorithm does, as long as 
there is no negative cycle).  

Efficiency O(|V2|) for graphs represented by weight 
matrix and array implementation of priority queue 

O(|E|log|V|) for graphs represented by adj. lists and 
min-heap implementation of priority queue 

Applicable to both undirected and directed graphs. 
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MODULE – 4 

 

DYNAMIC PROGRAMMING 
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Dynamic Programming 
 

 
Optimization Problem : Problems which demands minimum/maximum 

results 

 Dynamic “ means “changing” 
Programming”  means “planning” 

Dynamic Programming  is  a general algorithm design technique  
for solving problems with overlapping sub-problems. 

 Invented by American mathematician Richard Bellman in the  
1950s to solve optimization problems 

Main idea: 
-Solve smaller instances once. 
-Record solutions in a table.  
-Get solution to a larger instance  from  some smaller instances. 
-Optimal solution for the initial instance is obtained from that table. 
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Principle of Optimality 

 

 

 

Problems can be solved by taking sequence of   

decisions to get optimal solutions 
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Example: Fibonacci numbers  
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Example: Fibonacci numbers  
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Examples of DP algorithms 

•  Computing a binomial coefficient 
 

•  Longest common subsequence 
 

•  Warshall’s algorithm for transitive closure 
 

•  Floyd’s algorithm for all-pairs shortest paths 

 
•  Constructing an optimal binary search tree 

 
•  Some instances of difficult discrete optimization problems: 

 - traveling salesman 
 - knapsack 
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Multistage Graph 

A Multi stage graph G = <V,E> which is a directed graph. In 
this graph all the vertices and partitioned into K stages 
where K>=2. 

In multistage graph problem we have to find the shortest 
path from source to sink. 

The cost of each path is calculated by using the weight given 
along that edge. 

In multistage graph can be solved using forward and 
backward approach. 
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Warshall’s  Algorithm: Transitive Closure 
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Warshall’s  Algorithm: Transitive 
Closure 

Constructs transitive closure T as the last matrix in the sequence 
of n-by-n matrices  R(0), … , R(k), … , R(n)  where 
R(k)[i,j] = 1 iff there is nontrivial path from i to j  with only the first 
k vertices allowed as intermediate  
Note:  that R(0) = A (adjacency matrix), R(n)

 = T  (transitive closure)  
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Warshall’s  Algorithm (recurrence) 

i 

j 

k 

{ 

Initial condition? 

On the k-th iteration, the algorithm determines for every pair of 
vertices i, j  if a path exists from i and j with just vertices 1,…,k 
allowed as intermediate 

 
R(k-1)[i,j]                            (path using just 1 ,…,k-1) 

 R(k)[i,j] =                      or  
     R(k-1)[i,k]  and R(k-1)[k,j]    (path from i to k  
                                                          and from k to j 
                                                          using just 1 ,…,k-1) 
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Warshall’s  Algorithm (matrix generation) 

Recurrence relating elements R(k) to elements of R(k-1) is:  
     

R(k)[i,j] = R(k-1)[i,j] or (R(k-1)[i,k] and R(k-1)[k,j]) 

It implies the following rules for generating R(k) from R(k-1): 
 
Rule 1  If an element in row i and column j is 1 in R(k-1),  
             it remains 1 in R(k) 

 
Rule 2  If an element in row i and column j is 0 in R(k-1),  
             it has to be changed to 1 in R(k) if and only if  
             the element in its row i and column k and the element 
             in its column j and row k are both 1’s in R(k-1)  
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Warshall’s Algorithm (pseudocode and analysis) 

Time efficiency: Θ(n3) 
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Floyd’s Algorithm: All pairs shortest paths 

 

Problem:    In a weighted (di)graph, find shortest paths between 
                    every pair of vertices 

 
Same idea: construct solution through series of matrices D(0), …, 
                    D (n) using increasing subsets of the vertices allowed 
                    as intermediate 
 
Example: 
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Floyd’s Algorithm (matrix generation) 

On the k-th iteration, the algorithm determines shortest paths 

between every pair of vertices i, j that use only vertices among 

1,…,k as intermediate 

 

                D(k)[i,j] =  min {D(k-1)[i,j],  D(k-1)[i,k]  + D(k-1)[k,j]} 

 

i 

j 

k 

D(k-1)[i,j] 

D(k-1)[i,k] 

D(k-1)[k,j] 

Initial condition? 
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Time efficiency: Θ(n3) 

Note: Works on graphs with negative edges but without negative 
cycles.           

213



BMS Institute of  Technology and Mgmt Department of  ISE Department of  ISE BMS  Institute of  Technology and Mgmt 

Optimal Binary Search Tree 

Binary Tree  
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total number of BSTs with n nodes is given 

by C(2n,n)/(n+1) 
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Cost of searching any Key 
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Cost of BST-Frequencies 

18 

217



BMS Institute of  Technology and Mgmt Department of  ISE Department of  ISE BMS  Institute of  Technology and Mgmt 

Optimal Binary Search Tree 

Problem: Given n keys a1 < …< an and probabilities p1, …,  pn 

                         searching for them, find a BST with a minimum 
                 average number of comparisons in successful search. 

Since total number of BSTs with n nodes is given by C(2n,n)/(n+1), 
which grows exponentially, brute force is not recommended.  

218



BMS Institute of  Technology and Mgmt Department of  ISE Department of  ISE BMS  Institute of  Technology and Mgmt 

Example: What is an optimal BST for keys A, B, C, and D with 
                  search probabilities 0.1, 0.2, 0.4, and 0.3, respectively? 

 

D 

A 

B 

C 
Average # of comparisons        

= 1*0.4 + 2*(0.2+0.3) + 3*0.1 

= 1.7  
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Obtain the optimal binary search tree for the 
following 

(do, if, int, while) with the following 
probability(0.1,0.2,0.4,0.3) 
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Knapsack Problem 

Given n objects of known weights w1,w2…wn and 
profit p1, p2, … pn for those n objects and a knapsack 
of capacity M i.e is not exceeding the weight M. Let a 
variable xi be ‘0’ if we do not select the object ‘i’ or ‘1’ 
if we include the object ‘i’  into the knapsack.  

The objective is to maximize the total profit 

earned. Since the knapsack capacity is M, we 

require the total weight of all chosen objects to 

be at most M. 
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Knapsack problem 
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For the given instances of problem obtain the 

optimal solution for the knapsack problem 

The capacity of knapsack is W=5 
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To find items to be selected 
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Knapsack Problem by DP (pseudocode) 

Algorithm DPKnapsack(int: w[1..n], int: p[1..n], M) 

 int:  V[0..n,0..M] 

 for j := 0 to M do 

  V[0,j] := 0 

     for i := 0 to n do 

            V[i,0] := 0 

     for i := 1 to n do 

  for j := 1 to M do 

   if  w[i]  j and p[i] + V[i-1,j-w[i]] > V[i-1,j] then 

    V[i,j] := p[i] + V[i-1,j-w[i]];  

   else  

    V[i,j] := V[i-1,j];  

 return V[n,M]  

 
Running time and space:     O(nW). 
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Memory Function Knapsack 

Example:  Knapsack of capacity M = 5 

item      weight      value              

   1             2             $8 

   2             1             $6 

   3             3             $16 

   4             2             $11                capacity j 

                                0     1     2     3     4       5 

                                   0 
 

w1 = 2,  p1= 8      1 

w2 = 1,  p2= 6      2 
 

w3 = 3,  p3= 16    3 

w4  = 2,  p4= 11   4          ?  

0    0     0     0    0     0 

0   -1    -1   -1   -1   -1 

0   -1    -1   -1   -1   -1 

0   -1    -1   -1   -1   -1 

0   -1    -1   -1   -1   -1 249
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i=4, j=5, p[i]=11, wi =2 

J-wi = 5-2 = 3 ( able to fit into knapsack) 

Find V[4,5] = max{ mfk[i-1,j], p[i] + mfk[i-1, j-wi]} 

                     = max{ mkf(3,5), 11+mfk(3,3)} 

                     = max{ ---------, 11+  -------)} 

Find V[3,5] = max{ mkf(2,5), 16+mfk(2,2)} 

                     = max{ --------, 16+ -----------} 

 

 

Memory Function Knapsack 

250



BMS Institute of  Technology and Mgmt Department of  ISE Department of  ISE BMS  Institute of  Technology and Mgmt 

Find V[3,3] = max{ mfk[i-1,j], p[i] + mfk[i-1, j-wi]} 

                     = max{ mkf(2,3), 16+mfk(2,0)} 

                     = max{ ----,           16+  -----)} 

Find V[2,5] = max{ mkf(1,5), 6+mfk(1,4)} 

                     = max{ --------, 6+ -----------} 

Find V[2,2] = max{ mkf(1,2), 6+mfk(1,1)} 

                     = max{ --------,  6 + -----------} 

 

 

Memory Function Knapsack 
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Find V[2,3] = max{ mkf(1,3), 6+mfk(1,2)} 

                     = max{ --------,  6 + -----------} 

Find V[1,5] = max{ mkf(0,5), 8+mfk(0,3)} 

                     = max{   0 ,  8 + 0} = 8 

Find V[1,4] = max{ mkf(0,4), 8+mfk(0,2)} 

                     = max{   0 ,  8 + 0} = 8 

Find V[1,2] = max{ mkf(0,2), 8+mfk(0,0)} 

                     = max{   0 ,  8 + 0} = 8 

Find V[1,3] = max{ mkf(0,3), 8+mfk(0,0)} 

                     = max{   0 ,  8 + 0} = 8 

Find V[1,1] = max{ mkf(0,1)} = 0 

 

 

 

 

Back 

Substitute 

these 

values 
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Find V[2,3] = max{ mkf(1,3), 6+mfk(1,2)} 

                     = max{ 8,  6 + 8}  = 14 

Find V[1,5] = max{ mkf(0,5), 8+mfk(0,3)} 

                     = max{   0 ,  8 + 0} = 8 

Find V[1,4] = max{ mkf(0,4), 8+mfk(0,2)} 

                     = max{   0 ,  8 + 0} = 8 

Find V[1,2] = max{ mkf(0,2), 8+mfk(0,0)} 

                     = max{   0 ,  8 + 0} = 8 

Find V[1,3] = max{ mkf(0,3), 8+mfk(0,0)} 

                     = max{   0 ,  8 + 0} = 8 

Find V[1,1] = max{ mkf(0,1)} = 0 

 

 

 

 

Back 

Substitute 

these 

values 
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Find V[3,3] = max{ mfk[i-1,j], p[i] + mfk[i-1, j-wi]} 

                     = max{ mkf(2,3), 11+mfk(2,0)} 

                     = max{ 14 , 16+ 0)} = 16 

Find V[2,5] = max{ mkf(1,5), 6+mfk(1,4)} 

                     = max{ 8, 6+ 8} = 14 

Find V[2,2] = max{ mkf(1,2), 6+mfk(1,1)} 

                     = max{ 8,  6 + 0} = 8 

 

 

Memory Function Knapsack 
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 V[i,j] = max{ mfk[i-1,j], p[i] + mfk[i-1, j-wi]} 

i=4, j=5, p[i]=11, wi =2 

J-wi = 5-2 = 3 ( able to fit into knapsack) 

Find V[4,5] = max{ mfk[i-1,j], p[i] + mfk[i-1, j-wi]} 

                     = max{ mkf(3,5), 11+mfk(3,3)} 

                     = max{  24 , 11+ 16)} = 27 

Find V[3,5] = max{ mkf(2,5), 16+mfk(2,2)} 

                     = max{ 14, 16+ 8} = 24 

 

 

Memory Function Knapsack 
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Memory Function Knapsack 

Example:  Knapsack of capacity M = 5 

item      weight      value              

   1             2             $8 

   2             1             $6 

   3             3             $16 

   4             2             $11                capacity j 

                                0     1     2     3     4       5 

                                   0 
 

w1 = 2,  p1= 8    1 

w2 = 1,  p2= 6   2 
 

w3 = 3,  p3= 16    3 

w4  = 2,  p4= 11   4          ?  

0    0     0     0    0     0 

0   -1    -1   -1   -1   -1 

0   -1    -1   -1   -1   -1 

0   -1    -1   -1   -1   -1 

0   -1    -1   -1   -1   -1 

0    0     0     0    0     0 

0    0     8     8    8     8 

0   -1     8   14   -1   14 

0   -1    -1  16   -1    24 

0   -1    -1   -1   -1   27 256
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Memory Function Knapsack Algo. 

ALGORITHM MFKnapsack(i, j) //Implements the memory function method for 
the knapsack problem //Input: A nonnegative integer i indicating the number 
of the first // items being considered and a nonnegative integer j indicating // 
the knapsack capacity //Output: The value of an optimal feasible subset of the 
first i items //Note: Uses as global variables input arrays Weights[1..n], 
Values[1..n], //and table V[0..n, 0..W]whose entries are initialized with −1’s 
except for //row 0 and column 0 initialized with 0’s 

       if V[i, j]< 0  

           if j<Weights[i]  = value←MFKnapsack(i −1,j) 

                else     value←max,MFKnapsack(i −1, j),    

           values[i]+MFKnapsack(i −1,  j−Weights*i+)-                  

        V[i, j+←value 

        return V[i, j] 
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MODULE – 5 

 

BACKTRACKING 
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      Backtracking 

Backtrack’ the Word was first introduced by Dr. D.H. Lehmer in 
1950s.  
• R.J Walker Was the First man who gave algorithmic description 
in 1960.  
• Later developed by S. Golamb and L. Baumert.  

Backtracking technique resembles a depth-first – search 
in a directed graph. The graph concerned here is usually 
a tree, the aim of backtracking is to search the state 
space tree systematically. The aim of the search is to find 
solutions to some problems. 
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    What is Backtracking? 

When the search begins, solution to the problem is unknown. 

Each move along an edge of the tree corresponds to adding a 

new element to a partial solution, that is to narrowing down the 

remaining possibilities for a complex solution.  

The search is successful if, a solution can be completely 

defined. At this stage an algorithm may terminate or it may 

continue for an alternative solution. 

The search  is unsuccessful if at some stage the partial solution 

constructed so far cannot be completed. In this case the search 

backtracks like a depth first search, removing elements that 

were added at each stage.                                  
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    State Space Tree 

In state space tree, root represents an initial state before the 

search for a solution begins. The nodes of the first level in the 

tree represent the choice made for the first component of a 

solution, the nodes of the second level represent the choices for 

the second components, and so on. A node in a state space tree 

is said to be promising if it corresponds to a partially 

constructed solution that may lead to a complete solution; 

otherwise a node is said to be non promising. 
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N-Queen Problem 
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N Queen Problem 
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Constraints 

Explicit Constraints: All ‘n’ queens must be placed on the 
chessboard in the columns 1,2,3, …. N. Xi belongs to S where S = 
{1,2,3, …. N }  

Implicit Constraints: In this all Xi Values must be distinct  
No two queens can be on the same row 
No two queens can be on the same column 
No two queens can be on the same diagonal 
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Horizontal Attack: 

Row wise attacking is avoided by placing 1st queen in 
1st row, 2nd queen in 2nd row and so on.  
By placing ith queen in ith row, horizontal attacking can 
be avoided 
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Vertical Attack: 

(i, x[i]) means the position of ith queen in row i and 
column x[i] 
(k, x[k]) means the position of kth queen in row k 
and column x[k] 
If ith & kth queen are in same column then 
X[i] == x[k] --------------- (1) 
Hence indicate that queens attack vertically 
  

                                                   (1,1)  & (4,1)     x[i] == x[k]  to be avoided  
 
 
 

Q1 

Q4 
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Diagonal Attack: 

Top left corner to bottom right corner: The  difference 
between row value and column value is same. 
                                           (1,3)  & (2,4)    |i - x[i]| = |k - x[k]|-------(2) to be   
                                       avoided  
 
 
 

1,1 1,2 1,3 1,4 

2,1 2,2 2,3 2,4 

3,1 3,2 3,3 3,4 

4,1 4,2 4,3 4,4 
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Diagonal Attack: 

Top right corner to bottom left corner: The  difference 
between row value and column value is same. 
                                                   (1,3)  & (3,1)    i + x[i] = k + x[k] ------(3) to be   
                                       avoided  
 
 
 

1,1 1,2 1,3 1,4 

2,1 2,2 2,3 2,4 

3,1 3,2 3,3 3,4 

4,1 4,2 4,3 4,4 

Using eqn. (2)  and (3) 
i – k  =  x[i]  - x[k]  -----------------(4) 
i – k  =  - x[i] + x[k]  ----------------(5)  

|i – k|  = |x[i]  -  x[k]| indicates queens attack diagonally.  
 
X[i] == x[k] || abs(i –k) = abs(x[i] – x[k])   two queens 
attack each other and cannot be placed.   
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Algorithm 
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State Space Tree for 4 Queens 
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Two Solutions of 4 Queen Problem 
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Hamiltonian Cycle 

Hamiltonian Path in an undirected graph is a path that visits each vertex exactly 
once. A Hamiltonian cycle (or Hamiltonian circuit) is a Hamiltonian Path such that 
there is an edge (in graph) from the last vertex to the first vertex of the 
Hamiltonian Path. Determine whether a given graph contains Hamiltonian Cycle 
or not. If it contains, then print the path. Following are the input and output of 
the required function. 

Input: 
A 2D array graph[V][V] where V is the number of vertices in graph and 
graph[V][V] is adjacency matrix representation of the graph. A value graph[i][j] is 
1 if there is a direct edge from i to j, otherwise graph[i][j] is 0. 

Output: 
An array path[V] that should contain the Hamiltonian Path. path[i] should 
represent the ith vertex in the Hamiltonian Path. The code should also return 
false if there is no Hamiltonian Cycle in the graph. 
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Example 2 
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Example 

276



Department of  ISE BMS  Institute of  Technology and Mgmt 

Hamiltonian Cycle 

1 

4 3 

2 
1 

2 3 4 

3 

4 

1 

Solution 

2 

Dead end 

4 3 

2 

1 

Solution 

X[1] =1 X[2] = 0 X[3]=0 X[4]=0 
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for (int i = 1; i <= n; i++) 
x[i] = 0; 
x[1] = 1; 

void HamiltonianMethod(int k) { 
while (true) { 

NextValue(k, G, x, n); 
if (x[k] == 0) 
return; 

if (k == n) { 
for (int i = 1; i <= k; i++) 
System.out.print(x[i] + " "); 
System.out.println(x[1]); 
System.out.println(); 
found = true; 
return; 
} else 
HamiltonianMethod(k + 1); 

} 
} 

1 

2 3 4 

3 

4 

1 

Solution 

2 

Dead end 

4 3 

2 

1 
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void NextValue(int k, int G[][], int x[], int n) { 
while (true) { 
x[k] = (x[k] + 1) % (n + 1); 
if (x[k] == 0) 
return; 
if (G[x[k - 1]][x[k]] != 0) { 
int j; 
for (j = 1; j < k; j++) 
if (x[k] == x[j]) 
break; 
if (j == k) 
if ((k < n) || ((k == n) && G[x[n]][x[1]] != 0)) 
return; 
} 
} 
} 

Hamiltonian Cycle 
 
Enter the number of the vertices: 4 
 
If edge between the following vertices 
enter 1 else 0: 
1 and 2: 1 
1 and 3: 1 
1 and 4: 1 
2 and 3:  
1 
2 and 4: 0 
3 and 4: 1 
 
Solution: 
1 2 3 4 1 
 
1 4 3 2 1 
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1 

2 3 4 

3 

4 

1 

Solution 

2 

Dead end 

4 3 

2 

1 

Solution 
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Sum of subsets 
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Sum of subsets 
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Sum of Subsets 
Find a subset of a given set S= {S1, S2, S3, S4, ------ Sn} 
Of n +ve integers whose sum is equal to given +ve integer d subject 
to the constrains 
 
1. Implicit: All Xi values should be distinct and should belong to 

the set S 

2. Explicit: optimal solution be  𝑆𝑖𝑘
𝑖=1    =  d 

 
Xi of the solution vector is either 1 or 0 depending on weather the 
weight Wi is included or not. 
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For a node at level i, the left child corresponds to Xi = 1 
and the right child to Xi = 0 
 
The bounding function X[X1, X2, X3, -----Xn]  = true iff  

 𝑊𝑖  𝑋𝑖𝑘
𝑖=1 +  𝑊𝑖𝑛

𝑖=𝑘+1   ≥  𝑑 
 
X1, X2, -----Xk cannot lead to an promising node if this 
condition is not satisfied. 
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The bounding function can be strengthened if we 
assume that  Wi’s are initially in increasing order. 
 
In this case X1 – Xk can not lead to promising node if  
X[X1, X2, X3, -----Xn]  = true iff   

 𝑊𝑖  𝑋𝑖

𝑘

𝑖=1

+𝑊 𝑘 + 1  ≤  𝑑 

 
X1, X2, -----Xk cannot lead to an promising node if this 
condition is not satisfied. 
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Therefore the bounding function will be  

 𝑊𝑖  𝑋𝑖𝑘
𝑖=1 +  𝑊𝑖𝑛

𝑖=𝑘+1   ≥  𝑑   
 
 

𝑎𝑛𝑑  𝑊𝑖  𝑋𝑖

𝑘

𝑖=1

+𝑊 𝑘 + 1  ≤  𝑑 
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State space tree 
0, 1,  21 

0, 2, 18 3, 2, 18 

3, 3, 13 8, 3, 13 

 3, 4, 7 9, 4,  7 8, 4,  7 14, 4, 7 

15, 5,  0 

Solution 

X1=1 X1=0 

X2=1 X2=0 

X3=1 X3=0 X3=1 X3=0 

X4=1 
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Sum of subsets 
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Sum of subsets 
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Sum of subsets 
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Coding 

for (int i = 1; i <= n; i++) 
sum = sum + S[i]; 
if (sum < d || S[1] > d) 
System.out.println("No Subset possible"); 
else 
SumofSub(0, 0, sum); 
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static void SumofSub(int i, int weight, int total) { 
if (promising(i, weight, total) == true) 
if (weight == d) { 
for (int j = 1; j <= i; j++) { 
if (soln[j] == 1) 
System.out.print(S[j] + "  "); 
} 
System.out.println(); 
} else { 
soln[i + 1] = 1; 
SumofSub(i + 1, weight + S[i + 1], total - S[i + 1]); 
soln[i + 1] = 0; 
SumofSub(i + 1, weight, total - S[i + 1]); 
} 
} 
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static boolean promising(int i, int weight, int 
total) { 
return ((weight + total >= d) && (weight == d || 
weight + S[i + 1] <= d)); 
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Graph Coloring 
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Graph Coloring 
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Graph Coloring 
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Branch and Bound 
The term Branch means the way in which we search the 
state space tree and Bound means assigning bounding 
function at each node. This bounding function is used to 
prevent the expansion of  nodes that cannot possibly 
lead to an answer node. 

Basically there are two methods used in branch and 
bound technique. 

1. FIFO based Branch & Bound 
2. In this method, the live node form a queue (FIFO 

Structure) & each live node will be taken from the 
queue and next live node is selected. 

301



Department of  ISE BMS  Institute of  Technology and Mgmt 

      Branch and Bound 

Least Cost Branch and Bound 
At each node, an intelligent ranking function is used to 
assign a value to that node. The next live node is 
selected on the basis of the least cost. 

Travelling sales man problem, a sales man must visit n 
cities. The sales man visits each city exactly once and 
comes back to the starting city. 

The travelling sales man problem is minimization 
problem and hence we require to find the lower bound. 
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Example 1 

Assignment Problem : given n jobs <j1,j2,--- jn>  and  n persons 
<p1,p2,p3 ---pn>, it is required to assign all n jobs to all n persons 
with the constraint that one job has to be assigned to one person 
and the cost involved in completing all the jobs should be 
minimum. 

J1 J2 j3 j4 

A 9 2 7 8 

B 6 4 3 7 

C 5 8 1 8 

D 7 6 9 4 
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Example 1 

J1 J2 j3 j4 

A 9 2 7 8 

B 6 4 3 7 

C 5 8 1 8 

D 7 6 9 4 

2 

3 

1 

4 

Take minimum in each row 

 10 

a  J1 a  J2  a  J3  a  J4 

9 2 7 8 

3 3 4 3 

8 5 5 5 

4 4 4 6 

24 14 20 22 

a 

b 

c 

d 
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Example 1 

J1 J2 J3 J4 

A 9 2 7 8 

B 6 4 3 7 

C 5 8 1 8 

D 7 6 9 4 

2 

3 

1 

4 

Take minimum in each row 

 10 

b  J1 b  J3  b  J4 

2 2 2 

6 3 7 

1 5 1 

4 4 7 

13 14 17 

a 

b 

c 

d 

305



Department of  ISE BMS  Institute of  Technology and Mgmt 

Example 1 

J1 J2 J3 J4 

A 9 2 7 8 

B 6 4 3 7 

C 5 8 1 8 

D 7 6 9 4 

2 

3 

1 

4 

Take minimum in each row 

 10 

C  J3  C   J4 

2 2 

6 6 

1 8 

4 9 

13 25 

a 

b 

c 

d 

 C   J4 

2 

6 

1 

4 

13 

a 

b 

c 

d 
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Start 

Lb=10 

a –> J4 

Lb=22 

a –> J3 

Lb=20 

a – >J2 

Lb=14 

a –> J1 

Lb=24 

b –> J1 

Lb=13 

b –> J3 

Lb=14 

c –> J4 

Lb=17 

c –> J3 

Lb=13 

c –> J4 

Lb=25 

d –> J4 

Lb=13 
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Example 2 

J1 J2 j3 j4 

A 10 3 8 9 

B 7 5 4 8 

C 6 9 2 9 

D 8 7 10 5 
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Knapsack Problem 

Knapsack Problem: Given n items of known weights wi and values vi, i=1, 2, . . . , 
n,and a knapsack of capacity W, find the most valuable subset of the items that 
fit in the knapsack. It is convenient to order the items of a given instance in 
descending order by their value-to-weight ratios. Then the first item gives the 
best payoff per weight unit and the last one gives the worst payoff per weight 
unit 
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First arrange in V/W in decreasing order 
Since it is a maximization problem. The upper bound is calculated 
using the function 
  

i =0 , v=0, w=0 v i+1/wi+1 = 10 
Ub = 0 + (10) 10 = 100  
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w=0. v=0 

Ub = 100 

With item 1 
i =1, w=4. v=40, v i+1/wi+1 = 6 

Ub =  v + (W-w)(v i+1/wi+1 ) 
      =  40 + 6. 6 
      =  76 

Without item 1 
i =1, w=0. v=0, v i+1/wi+1 = 6 

Ub =  v + (W-w)(v i+1/wi+1 ) 
      =  0 + 10 . 6 
      =  60 

With item 2 
i =2, w=7. v=42, v i+1/wi+1 = 5 

Ub =  v + (W-w)(v i+1/wi+1 ) 
      =  42 + (10 – 11) . 5 
      =  Not Feasible 

With out item 2 
i =2, w=0+4. v=40+0, v i+1/wi+1 = 
5 

Ub =  v + (W-w)(v i+1/wi+1 ) 
      =  40 + 6. 5 
      =  70 
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w=0. v=0 

Ub = 100 

With item 3 
i =3, w=5+4. v=40+25, v i+1/wi+1 = 4 

Ub =  v + (W-w)(v i+1/wi+1 ) 
      =  65 + 1. 4 
      =  69 

Without item 3 
i =3, w=4+0. v=40+0, v i+1/wi+1 = 4 

Ub =  v + (W-w)(v i+1/wi+1 ) 
      =  40 + 6 . 4 
      =  64 

With item 4 
i =4, w=9+3 =12.  

Ub =  v + (W-w)(v i+1/wi+1 ) 
       =  Not Feasible 

With out item 4 
i =4, w=0+9. v=65+0, v i+1/wi+1 = 1 

Ub =  v + (W-w)(v i+1/wi+1 ) 
      =  65 + 1. 1 
      =  66 
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w=0. v=0 

Ub = 100 

With item 1 
i =1, w=4. v=40, v i+1/wi+1 = 6 

=  76 

Without item 2 
i =1, w=0. v=0, v i+1/wi+1 = 6 

=  60 

With item 2 
i =2, w=7. v=42, v i+1/wi+1 = 5 

=  Not Feasible 

With  out item 2 
i =2, w=0+4. v=40+0, v i+1/wi+1 = 5 

=  70 

With item 3 
i =3, w=5+4. v=40+25, v i+1/wi+1 = 4 

=  69 

Without item 3 
i =3, w=4+0. v=40+0, v i+1/wi+1 = 4 

=  64 

With item 4 
i =4, w=9+3 =12.  

Not Feasible 

With out item 4 
i =4, w=0+9. v=65+0, v i+1/wi+1 = 0 

=  65 
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Travelling Sales Person Problem 

a 

b c 

d 
4 

2 

5 

3 

1 

1 

In the travelling sales man problem, a sales man must visit n 
cities. The sales man visits each city exactly once and comes 
back to the starting city. 
The travelling sales man problem is minimization problem 
and hence we require to find the lower bound.  

Lower bound = lb = S / 2; 
Where S = [Va+ Vb+Vc+Vd] 
Va = sum of distances from vertex a to the nearest 
vertices 1 + 3 = 4 
Vb = 1+3 = 4 
Vc = 1+2= 3 
Vd = 1+2 = 3 
Lb = [4 +4 +3+3] / 2 = 14 / 2 = 7 
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Now find, 
a  b  = (3+1)+(3+1)+(1+2)+(1+2) = 14/ 2 = 7 
a  c  = (1+3)+(3+1)+(1+2)+(1+2) = 14/ 2 = 7 
a  d  = (4+1)+(1+3)+(1+2)+(4+1) = 17/2 = 8 

Start 

Lb=7 

a –> d 

Lb=8 
a – > c 

Lb=7 

a –> b 

Lb=7 
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Now find, 
b  c  = (3+1)+(5+1)+(5+1)+(1+2) = 19/ 2 = 9 
b  d  = (1+3)+(1+3)+(1+2)+(1+2) = 14/ 2 = 7 
c  b  = (1+3)+(5+1)+(5+1)+(1+2) = 19/2 = 9 
c  d  = (1+3)+(3+1)+(2+1)+(2+1) = 14/ 2 = 7 

Start 

Lb=7 

a –> d 

Lb=8 
a – > c 

Lb=7 

a –> b 

Lb=7 

c –> d 

 Lb=7 
b – > d 

  Lb=7 

b –> c 

  Lb=9 

c –> b 

  Lb=9 
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Now find, 
d  c  = (1+3)+(1+3)+(2+1)+(1+2) = 14/2 = 7 
d  b  = (1+3)+(1+3)+(1+2)+(1+2) = 14/2 = 7 
c  a  = (1+3)+(1+3)+(1+2)+(1+2) = 14/2 = 7 
b  a  = (3+1)+(3+1)+(1+2)+(1+2) = 14/2 = 7 

Start 

Lb=7 

a –> d 

Lb=8 

a – > c 

Lb=7 

a –> b 

Lb=7 

a –> c  d 

     Lb=7 

a b –> d 

     Lb=7 

a b –> c 

    Lb=9 

a c –> b 

     Lb=9 

a b – > d  c 

          Lb=7 

a c   d – > b 

         Lb=7 

a b – > d  c 

          Lb=7 

a c   d – > b 

         Lb=7 
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Thank you 
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