Design and Analysis of Algorithm
18CS42
4t Sem

Department of ISE | BMS Institute of Technology and Mgmt

Table of Contents

Module Module Title Page
Number Number
1 Introduction 1-78
2 Divide and Conquer 79-137
3 Greedy Method 138-187
4 Dynamic Programming 188-257
5 Backtracking 258-317

Department of ISE

BMS Institute of Technology and Mgmt

ISE Dept.

Tramsform Here

MODULE -1

INTRODUCTION

introduction to The Design &
Analysis of Algorithms
2o comon M e

AP

Department of ISE = BMS Institute of Technology and Mgmt 1

Course Outcomes(COs): (==

At the end of the course, the students will be able to attain the following
skills.

COo1 on various to

oy Apply the basic knowledge of mathematical fundamentals for
finding time complexity of recursive and non-recursive
algorithms.

‘so B Analyse various problems and choose appropriate algorithmic
technique to use for solving real time problems.

00} Design algorithms for various real time applications.

‘s .3 Conduct investigation on societal problems and develop code
using contemporary computing languages.

o] Work in team and communicate effectively on various
algorithmic techniques.

Department of ISE | BMS Institute of Technology and Mgmt 2

ISE Dept.

Trawsforn Here

Agenda

What is an Algorithm?
Algorithm Specification

Analysis Framework

i

6

|1
Performance Analysis: Space complexity, Time complexity N |
Asymptotic Notations: Big-Oh notation (O), Omega notation (Q), <
Theta notation (©), and Little-oh notation (o) R
Mathematical analysis of Non-Recursive
Recursive Algorithms with Examples .
Important Problem Types: Sorting, Searching, String processing, Graph Problemes,
Combinatorial Problems.

Fundamental Data Structures: Stacks, Queues, Graphs, Trees, Sets and Dictionaries.

Department of ISE | BMS Institute of Technology and Mgmt 3

Students will be able to

v' Representing real world problem into algorithmic notation.
v Performance analysis of an algorithm.
v' Important problem types.

v' Fundamental Data structures.

Department of ISE | BMS Institute of Technology and Mgmt 4

What is an algorithm?

Algorithmic: The sprit of computing — David Harel.

Another reason for studying algorithms is their
usefulness in developing analytical skills.

Algorithms can be seen as special kinds of solutions to

problems — not answers but rather precisely defined
procedures for getting answers.

Department of ISE = BMS Institute of Technology and Mgmt

What is an algorithm?

Recipe, process, method, technique, procedure,
routine,... with the following requirements:

1.

Finiteness
§] terminates after a finite number of steps

Definiteness

§) rigorously and unambiguously specified
Clearly specified input

§) valid inputs are clearly specified

Clearly specified/expected output

§] can be proved to produce the correct output given a valid input

Effectiveness
§] steps are sufficiently simple and basic

Department of ISE = BMS Institute of Technology and Mgmt

Algorithm

 Can be represented in various forms
« Unambiguity/clearness

« Effectiveness

* Finiteness/termination

e Correctness

Department of ISE | BMS Institute of Technology and Mgmt 7

What is an algorithm?

An algorithm is a sequence of unambiguous instructions
for solving a problem, i.e., for obtaining a required
output for any legitimate input in a finite amount of
time.

Problem

|

Algorithm

l

Department of ISE | BMS Institute of Technology and Mgmt

Why study algorithms?

 Theoretical importance

— the core of computer science

* Practical importance
— A practitioner’s toolkit of known algorithms

— Framework for designing and analyzing algorithms for new problems

Department of ISE | BMS Institute of Technology and Mgmt 9

Euclid’s Algorithm

Problem: Find gcd(m,n), the greatest common divisor of two
nonnegative, not both zero integers m and n

Examples: gcd(60,24) =12, gcd(60,0)=60, gcd(0,0)="
Euclid’s algorithm is based on repeated application of equality
gcd(m,n) = gcd(n, m mod n)

until the second number becomes 0, which makes the problem
trivial.

Example: gcd(60,24) = gcd(24,12) = gcd(12,0) =12

Department of ISE = BMS Institute of Technology and Mgmt 10

Step 1 If n=0, return m and stop; otherwise go to Step 2

Step 2 Divide m by n and assign the value of the remainder to r

Step 3 Assign the value of n to m and the value of rton. Go to
Step 1.

while n #0 do
r< mmodn
mé&< n
né&r
return m

Department of ISE | BMS Institute of Technology and Mgmt 11

Other methods Tor computing
gcd(m,n)

Consecutive integer checking algorithm

Step 1 Assign the value of min{m,n}to t

Step 2 Divide m by t. If the remainderis 0, go to Step 3;
otherwise, go to Step 4

Step 3 Divide n by t. If the remainder is O, return t and stop;
otherwise, go to Step 4

Step 4 Decrease t by 1 and go to Step 2

Is this slower than Euclid’s algorithm?
How much slower?

Department of ISE = BMS Institute of Technology and Mgmt 12

Middle-school procedure

Step 1 Find the prime factorization of m
Step 2 Find the prime factorization of n
Step 3 Find all the common prime factors

Step 4 Compute the product of all the common prime factors
and return it as gcd(m,n)

Is this an algorithm?

How efficient is it?

Department of ISE = BMS Institute of Technology and Mgmt

13

ISE Dept.

Sieve of Eratosthenes

Input: Integer n 2 2
Output: List of primes less than or equal to n
forp < 2tondo Alp] & p
for p < 2 to sqgrt(n) do
if A[p] #0 //p hasn’t been eliminated on previous passes
J&<pp
while j<n do
A[j] ¢ 0 //mark element as eliminated
J<j+p

Example:2 3456 7 8 910 11 12 13 14 15 16 17 18 1920

Output:2 3 57 11 13 17 19

Department of ISE | BMS Institute of Technology and Mgmt 14

Fundamental steps in solving problems (=2

Linderstand the problam

Dacide on:
cormputational maans,
axact vs, appraximate salwng,
algornthm desgn technigue

b i
Design an algonthm

k.
Prowe comectnosss

*
fAnalyre the algorthm

Coda tha algorthem

Department of ISE | BMS Institute of Technology and Mgmt 15

Fundamental steps in solving problems

v’ Statement of the problem
v'Development of mathematical model
v’ Design of the algorithm

v’ Correctness of the algorithm

v’ Analysis of algorithm for its time and space
complexity

v Implementation
v Program testing and debugging

v Documentation

Department of ISE = BMS Institute of Technology and Mgmt

16

Important problem types

* Sorting

e Searching

* String processing
* Graph problems

 Combinatorial problems

* Geometric problems

 Numerical problems

Department of ISE | BMS Institute of Technology and Mgmt 17

Graph Problems

Informal definition

— A graph is a collection of points called , some of
which are connected by line segments called

Modeling real-life problems

— Modeling WWW

— Communication networks
— Project scheduling ...
Examples of graph algorithms
— Graph traversal algorithms
— Shortest-path algorithms
— Topological sorting

Department of ISE | BMS Institute of Technology and Mgmt 18

Linear Data Structures

A sequence of n items of the same

= Arrays

data type that are stored contiguously
in computer memory and made n
accessible by specifying a value of the

array’s index.

A sequence of zero or more nodes

each containing two kinds of

information: some data and one or
more links called pointers to other

nodes of the linked list.
Singly linked list (next pointer)

Doubly linked list (next + previous

pointers)

al "la2

> ¢ o o :an

fixed length (need preliminary
reservation of memory)

contiguous memory locations
direct access
Insert/delete

s Linked Lists

dynamic length

arbitrary memory locations
access by following links
Insert/delete

Department of ISE

BMS Institute of Technology and Mgmt 19

Stacks and Queues

— A stack of plates

* insertion/deletion can be done only at the top.
* LIFO

— Two operations (push and pop)

— A queue of customers waiting for services

* Insertion/enqueue from the rear and deletion/dequeue from the
front.

* FIFO
— Two operations (enqueue and dequeue)

Department of ISE | BMS Institute of Technology and Mgmt 20

Priority Queue and Heap

(implemented using)

= A data structure for maintaining a set of elements, each associated
with a key/priority, with the following operations

= Finding the element with the highest priority
= Deleting the element with the highest priority

= Inserting a new element
= Scheduling jobs on a shared computer

Department of ISE | BMS Institute of Technology and Mgmt 21

Graphs

 Formal definition

— A graph G =<V, E> is defined by a pair of two sets: a finite set V of
items called and a set E of vertex pairs called

and graphs ().
 What’s the maximum number of edges in an
undirected graph with |V| vertices?

and graphs

— A graph with every pair of its vertices connected by an edge is called
complete, Ky,

Department of ISE | BMS Institute of Technology and Mgmt 22

Graph Representation

— n x n boolean matrix if |V] is n.

— The element on the ith row and jth column is 1 if there’s an edge from ith
vertex to the jth vertex; otherwise 0.

— The adjacency matrix of an undirected graph is symmetric.

— A collection of linked lists, one for each vertex, that contain all the vertices
adjacent to the list’s vertex.

* Which data structure would you use if the graph is a 100-node star shape?

0111 o
0201 & Bl
0000 r-

Department of ISE | BMS Institute of Technology and Mgmt 23

Weighted Graphs

— Graphs or digraphs with numbers assigned to the edges.

Department of ISE | BMS Institute of Technology and Mgmt 24

Graph Properties -- Paths and Connectivity

ISE Dept.

Trawsforn Here

— A path from vertex u to v of a graph G is defined as a sequence of
adjacent (connected by an edge) vertices that starts with u and ends
with v.

: All edges of a path are distinct.
— Path lengths: the number of edges, or the number of vertices — 1.

— A graph is said to be connected if for every pair of its vertices uand v
there is a path from u to v.

— The maximum connected subgraph of a given graph.

Department of ISE | BMS Institute of Technology and Mgmt 25

Graph Properties -- Acyclicity

— A simple path of a positive length that starts and ends
a the same vertex.

— A graph without cycles
(Directed Acyclic Graph)

Department of ISE | BMS Institute of Technology and Mgmt 26

Trees

* Trees
— Atree (or) is a connected acyclic graph.

— Forest: a graph that has no cycles but is not necessarily connected.
* Properties of trees

— For every two vertices in a tree there always exists exactly one simple
path from one of these vertices to the other. Why?

: The above property makes it possible to select an arbitrary vertex in a
free tree and consider it as the root of the so called rooted tree.

* Levelsin a rooted tree.

rooted

I|E|=|V|'1

Department of ISE | BMS Institute of Technology and Mgmt 27

Rooted Trees (l)

For any vertex v in a tree T, all the vertices on the simple path
from the root to that vertex are called ancestors.

All the vertices for which a vertex v is an ancestor are said to be
descendants of v.
and

If (u, v) is the last edge of the simple path from the root to
vertex v, u is said to be the parent of vand v is called a child of
u.

Vertices that have the same parent are called siblings.

A vertex without children is called a leaf.

A vertex v with all its descendants is called the subtree of T
rooted at v.

Department of ISE = BMS Institute of Technology and Mgmt 28

Rooted Trees (lI)

of a vertex

— The length of the simple path from the root to the vertex.

of a tree

— The length of the longest simple path from the root to a leaf.

h

2

Department of ISE | BMS Institute of Technology and Mgmt 29

Ordered Trees

~
- Ny L N
- u,-‘ ‘;"0
‘ *ehgatuns® '

e Ordered trees

— An ordered tree is a rooted tree in which all the children of each vertex
are ordered.

— A binary tree is an ordered tree in which every vertex has no more than
two children and each children is designated s either a left child or a
right child of its parent.

— Each vertex is assigned a number.

— A number assigned to each parental vertex is larger than all the
numbers in its left subtree and smaller than all the numbers in its right
subtree.

. Uogznj <h <n-1, where his the height of a binary tree and n the size.

Department of ISE | BMS Institute of Technology and Mgmt 30

Computing time functions

1 constant
log n logarithmic
n linear

n log n n=-log-n
n? quadratic
3 cubic
2" exponential
n! factorial

Department of ISE | BMS Institute of Technology and Mgmt 31

n [log,m n nlogyn n? n? 20 n!

10 | 3.3 1087 3.3107 107 10° 10° 3.6-10°
102 | 6.6 10°2 6.610% 10¢ 10° 1.310°° 9.3.10%7
10° | 10 10° 1.010¢ 10° 10°

104 13 104 1.310° 108 102

10° 17 10° 1.7.10% 1010 1015

106 | 20 108 20107 102 108

Table 2.1 Values (some approximate) of several functions important

for analysis of algorithms

Department of ISE | BMS Institute of Technology and Mgmt 32

Order of growth

 Most important: Order of growth within a
constant multiple as n—>oo

 Example:

— How much faster will the algorithm run on computer that is
twice as fast?

— How much longer does it take to solve problem of double
input size?

Department of ISE = BMS Institute of Technology and Mgmt 33

Best-case, average-case, worst-case (*22

For some algorithms efficiency depends on form of input:

* Worstcase: C,,.(n)—maximum over inputs of size n
* Best case: Cpest(n) = minimum over inputs of size n

* Average case: C_ (n)— “average” over inputs of size n

avg

— Number of times the basic operation will be executed on typical
input.

— NOT the average of worst and best case.

Department of ISE | BMS Institute of Technology and Mgmt 34

Asymptotic order of growth

A way of comparing functions that ignores constant
factors and small input sizes

* 0O(g(n)): class of functions f(n) that grow no faster than g(n)

* ©(g(n)): class of functions f(n) that grow at same rate as g(n)

* Q(g(n)): class of functions f(n) that grow at least as fast as g(n)

Department of ISE = BMS Institute of Technology and Mgmt 35

Definition: f(n) is in O(g(n)) if order of growth of f(n) < order of
growth of g(n) (within constant multiple),
i.e., there exist positive constant ¢ and non-negative integer n,
such that

f(n) = c g(n) for every n 2 n,

Example:
* 5n+2is0O(n); c=7andny=1

Note : The Upper Bound indicates that the function will be the worst case that it
does not consume more than this computing time.

Department of ISE = BMS Institute of Technology and Mgmt 36

Big-oh

og(n)
t{n)

doesn't
matter

Figure 2.1 Blg—oh notation: #(n) € O(g(n))

Department o : nstitute of Technology and Mgm

ISE Dept.

Trawsforn Here

37

Definition: f(n) is in (g(n)) if order of growth of f(n) = order of
growth of g(n) (within constant multiple),
i.e., there exist positive constant ¢ and non-negative integer n,
such that

fln) = c g(n) for everyn 2 n,

Example:
* 5n+2is ((n); c=5andn,=1

Department of ISE | BMS Institute of Technology and Mgmt 38

Big-Omega I5E Dept.

F
t(n)
cg(n)
doesn't
matter
17

Fig. 2.2 Big-omega notation: ¢(n) € 2(g(n))

Department of ISE | BMS Institute of Technology and Mgmt 39

o stablishing order of growth using the definit|g#e:

Definition: f(n) is in ©(g(n)) iff there exists three positive
constants c1,c2 and n, with the constraint that c1 g(n) < f(n)
< c2 g(n) for everyn=n,

Example:

e 3n+2is O (n)

* cl g(n)<f(n)<c2g(n) for every n2n,

* 3n<3n+t2<4n foreveryny=2,c1=3,c2=4

Department of ISE | BMS Institute of Technology and Mgmt 40

Big-theta

doesn't
matter

:3 e e e e e —— e —— — — — — i ——————————— ——— ————

Figure 2.3 Big-theta notation: ¢(n) € @(g(n))

Department o BMS Institute of Technology and Mgmt 41

N = A
Rt H
A wy
= .‘*. % =~
- S

S,Properties of asymptotic order of growth

* fln) € O(f(n))
* fln) € O(g(n)) iff g(n) €Q(f(n))
* Iff(n) € O(g(n)) and g(n) € O(h(n)), then f(n) € O(h(n))

Note similarity witha <b

* Iffi(n) € O(g4(n)) and f,(n) € O(g,(n)), then
f1(n) + f,(n) € O(max{g,(n), g,(n)})

Department of ISE | BMS Institute of Technology and Mgmt 42

Time efficiency of nonrecursive
algorithms

General Plan for Analysis

Decide on parameter n indicating input size

|dentify algorithm’s basic operation

Determine worst, average, and best cases for input of size n

Set up a sum for the number of times the basic operation is
executed

Simplify the sum using standard formulas and rules

Department of ISE = BMS Institute of Technology and Mgmt 43

0 order of growth of T(n) < order of growth of ¢(r

. ¢ > 0 order of growth of T(n) = order of growth of ¢
lim T(n)/g(n)=< J () J gu

n—=

- « order of growth of T(n)> order of growth of ¢(n

N
Examples:
* 10n VS. n?
* n(n+1)/2 VS. n?

Department of ISE | BMS Institute of Technology and Mgmt 44

Example: Sequential search

Algorithm Sequential search(A[0..n-1], k)

//search for a given value in a given array by sequential search

//Input: An array A[0..n-1] and a search key k

//Output: The index of the first elements of A that matches k or -1 if there are no

matching element. 6 Type equation here.
forl € 0tondo 6 n 1 n/2
If (A[i] == k) n 1 n/2
{
found; 10 1 1 O
break;
}
not found 01 0 0 1
Worst case - O(n) Best case - Q(n)

Average case — O(n/2)

Department of ISE = BMS Institute of Technology and Mgmt 45

Example 1: Maximum element

ALGORITHM MaxElement(A[0..n — 1])

//Determines the value of the largest element in a given array
/[Input: An array A[0..n — 1] of real numbers
//Output: The value of the largest element in A
maxval < A[0]
fori < 1ton—1do

if A[i] > maxval

maxval < Ali]

return maxval

Department of ISE = BMS Institute of Technology and Mgmt

46

Analysis

1. Input parameter:n 3. n—1
2. Basic operation:
Comparison

Ali] > max o

Department of ISE = BMS Institute of Technology and Mgmt

47

«..Example 2: Element uniqueness
problem

ALGORITHM UnigqueElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
//Input: An array A[O..n — 1]
//Output: Returns “true” if all the elements in A are distinct
// and “false” otherwise
fori < Oton —2do

forj«<—i+1ton—1do

if A[i]= A[/] return false

return true

Department of ISE | BMS Institute of Technology and Mgmt 48

Analysis

1. Input parameter is input size n
2. Basic operation: Comparison A[i] == Al[j]

3. n-2 n-1 n-2 n-2
S ZZI—Z[H—I—[J-I—l-l—l]—Zn—l—e'}
=0 j=i+1 1=(1=(
n-2 n-2 n-2 (n—7 :_”
—Z[n—l}—z:— n—1) ZI—
1=l 1=l
B) {n—ﬂ}{n—l} (m—1)n 3
=(n-1) 2 En £ A(n’).
4.

We also could have computed the sum Z:';[]Z{n — 1 —1) faster as follows:

n
Nn—z

Z[n—l—f}:[n—l}-l—{n—EJ+“'+]= fu—zl‘m~ € O(n?)
1=(

Department of ISE = BMS Institute of Technology and Mgmt 49

EXample 5: IVliatrix
multiplication

ISE Dept.

Trawsforn Here

ALGORITHM MatrixMultiplication(A[0..n — 1, 0..n — 1], B[O..n — 1. 0..n — 1])
//Multiplies two n-by-n matrices by the definition-based algorithm
//Tnput: Two n-by-n matrices A and B
/[Output: Matrix C = AB
fori <~ 0Oton —1do
forj <0ton—-1do
Cli, j] < 0.0
fork < Oton 1do
Cli, j] < Cl[i, j]+ Ali, k] = B[k, j]
return C

Department of ISE | BMS Institute of Technology and Mgmt 50

ISE Dept.

Trawsforn Here

oW | Cli,j]

where C[i, j|=A[i, 0B[0, j]+- -+ A[i, k|B[k, j]+ -+ Ali,n = 1]B[n -1, j]
for every pair of indices 0 <, j <n-1.

Department of ISE | BMS Institute of Technology and Mgmt 51

1.

Analysis

Input parameter is input size n? X n?

2. Basic operation: Comparison Cli,j] == Cli,j] + Ali,k] * B[k,j]

3.

n—1

YL

ki)
and the total number of multiplications Min) is expressed by the following
triple sum:

a—] 1
|'1-f[.l':l::l = E E
) il

MNow, we can compute this sum by using formula (51) and rule (R1) given
above. Starting with the innermost sum 37— ! g 1. which is equal to n (why), we get

!
L.
]

a—1 n—1 r—1 n—1 a—]
H"":'_ZEE[_EZ"_EH _
Pl el k) dmml) jumd]) I i)

€ O(nd)

Department of ISE = BMS Institute of Technology and Mgmt

52

Selection Sort

Algorithm SelectionSort (A[0..n-1])

//The algorithm sorts a given array by selection sort
//Input: An array A[0..n-1] of orderable elements
//Output: Array A[0..n-1] sorted in ascending order

fori<-0ton-2do
min € i
forj<i+1ton—1do
if A[j] < A[min]
min < |
swap Ali] and A[min]

Time efficien CY. ©(n?) comparisons (in the worst case)

Department of ISE | BMS Institute of Technology and Mgmt 53

e X(n)=x(n-1) + 5 for n>1, x(1) =0
X(n) =x(n-1) + 5
X(n) = x(n-2) + 5+5
=x(n-2) + 2 *5
X(n) = x(n-3) + 3*5

X(n) =x(n-n-1) + n-1 *5
=x(1) + (n-1) * 5
= 0(n-1) =0O(n)

Department of ISE | BMS Institute of Technology and Mgmt 54

Solve x(n) = 3x(n-1) for n>1, x(1) =4

x(n) = 3x(n-1)
= 3[3x(n-2)]
= 32 x(n-2)
= 33 [x(n-3)
= 3% [x(n-4),

= 3™1 [x(n-n-1)]
=3n1 [x(1)] = 3"1 [4] =4/3 * 3"

Department of ISE | BMS Institute of Technology and Mgmt 55

Solve

1. X(n) = x(n/2) + n for n>1
2.T(n)=T(n/2) + T(n/2) + 3 for n> 2
T(2)=2,T(1) =1

Department of ISE | BMS Institute of Technology and Mgmt 56

Plan for Analysis of Recursive
Algorithms

 Decide on a parameter indicating an input’s size.

e |dentify the algorithm’s basic operation.

* Check whether the number of times the basic op. is executed
may vary on different inputs of the same size. (If it may, the
worst, average, and best cases must be investigated
separately.)

e Set up a recurrence relation with an appropriate initial
condition expressing the number of times the basic op. is
executed.

e Solve the recurrence (or, at the very least, establish its
solution’s order of growth) by backward substitutions or
another method.

Department of ISE | BMS Institute of Technology and Mgmt 57

Example 1: Recursive evaluation of

n!
Definition:n1=1*2=* .. *¥(n-1) *n forn=21 and
0l=1

Recursive definition of nl: F(n) = F(n-1) * n forn 2
1 and

F(O)=1

ALGORITHM F(n)

//Computes n! recursively
Size: /[Input: A nonnegative integer n

Basic operation: //Output: The value of n!

Iation: if » =0 return 1
Recurrence relation: else return F(n — 1) n

Department of ISE = BMS Institute of Technology and Mgmt 58

M(n) = M(n-1) +1, M(0)=0

Refer Notes

Department of ISE | BMS Institute of Technology and Mgmt 59

Tower of Hanoi Problem

In this problem, we have n disks of different sizes and
three pegs.

Initially, all the disks are on the first peg in order of
size, the largest on the bottom and the smallest on
top.

The goal is to move all the disks to the third peg,
using the second one as an auxiliary if necessary.

We can move only one disk at a time, and it is
forbidden to place a larger disk on top of a smaller
one.

Department of ISE | BMS Institute of Technology and Mgmt 60

: B .

)

Recurrence for nurnoer of rnoves:

(

Department of ISE | BMS Institute of Technology and Mgmt 61

Algorithm : TOH (n, §, T, D)

/] Solving Tower of Hanoi Problems
// Input : Number of discs n

/] Output : The sequence of movements,
{

ifn>0

{
H (n-1,85,D,1;
move disk from § to D
TE (n-1, 7, 8, D)

Department of ISE | BMS Institute of Technology and Mgmt

62

moves
M(n) =2M(n-1) +1, M(0)=0

2[2M(n-2)+1]+1
2°M(n-2) +2 +1

22 [2M(n-3) +1]+2 +1
23 M(n-3) + 2242 +1

2" M(n-n) + 2"1 +2n2 4+ 2242 +1

Standard formula used is G.P sequence
a(r —1)

1+2+22+--2"24201) =

Here a=1 and r=2 => 0(2")

Department of ISE = BMS Institute of Technology and Mgmt 63

r—1

Department of ISE | BMS Institute of Technology and Mgmt 64

Fibonacci numbers

The Fibonacci numbers:
0,1,1,2,3,5,8,13, 21, ...

The Fibonacci algorithm (recursive)
Fib(n)
{
If n<=1
return n

Else
Return F(n-1) + F(n-2)

Department of ISE | BMS Institute of Technology and Mgmt 65

* The recurrence equation for this problemis:

T(n) = T(n-1) + T(n-2) for n>1 and the initial
conditions are T(0) =0, T(1) =

Solution to recurrence relation:

T(n) = T(n-1) + T(n-2)

T(n) =T(n-1) -T(n-2) =

This is of the form ax(n) +bx(n-1) +cx(n-2) =0

Which is a homogeneous second order linear
relation wit

Department ofiISE; | BMS Insutute or Technology and Mgmt 66

* Wherea=1, b=-1, c=-1

Consider it as a quadratic equation
ar’+br+c=0

Then the roots of the equation
rr—r—1=0

r1,2 = (1+ V5)/2

These roots rl and r2 are real and distinct.

The reciirrence relation can he oiven ag

Department of ISE | BMS Institute of Technology and Mgmt

67

T(n)=or™ + Br,"

T(n) = [(1 4+ V5)/2 1+ B[(1 — V5)/2 "

Substituting T(0) =0

=o [(1+ V5)/21°+B[(1 — V5)/21°
=X =- orff=—«
T(1) =1

=oc [(1+ V5)/2 1 +B[(1 — V5)/2]" =1

x = 1/+/8 and R= —1 /-/5§

Department of ISE | BMS Institute of Technology and Mgmt 68

Little oh Notation (o)

 The asymptotic upper bound provided by O-
notation may or may not be asymptotically
tight. The bound 2n% = O(n?) is asymptotically
tight but the bound 2n = o(n?) is not.

 We use o-notation to denote an upper bound
that is not asymptotically tight

e f(n) = o(g(n)); f(n) is equal to the little oh of
g(n), iff f(n) < ¢, g(n) for any +ve constant c>0,
no>0 and n>no

Department of ISE = BMS Institute of Technology and Mgmt 69

0 order of growth of T(n) < order of growth of ¢(r

. ¢ > 0 order of growth of T(n) = order of growth of ¢
lim T(n)/g(n)=< J () J gu

fN— =0
= « order of growth of T(n)> order of growth of ¢(n
N
Examples:
*10n VS. n?
*Sn +2 VS. n

Department of ISE | BMS Institute of Technology and Mgmt 70

Property of the Asymptotic Notations (=2

1. Theorem :If t1(n) € O(g1(n)) and t2(n) €
O(g2(n)), then

tl(n) + t2(n) € O(max{gl(n), (g2(n)})

2. Theorem: If f(n)=a,,n™+----+a, n+a,and
a,, >0, then f(n) = O(n™)

Department of ISE = BMS Institute of Technology and Mgmt 71

Brute Force

A straightforward approach, usually based directly on the
problem’s statement and definitions of the concepts involved

Examples:
1. Computing a” (a >0, n a nonnegative integer)

2. Computing n!

3. Multiplying two matrices

4. Searching for a key of a given value in a list

Department of ISE | BMS Institute of Technology and Mgmt 72

Brute-Force Sorting Algorithm

Selection Sort Scan the array to find its smallest element and
swap it with the first element. Then, starting with the second
element, scan the elements to the right of it to find the
smallest among them and swap it with the second elements.
Generally, on pass i (0 <i < n-2), find the smallest element in
Ali..n-1] and swap it with A[/]:

Al0] < . . . <A[i-1] *A[i],. : .,A[min],.T. ., Aln-1]

in their final positions

Example:7 3 2 5

Department of ISE = BMS Institute of Technology and Mgmt 73

Analysis of Selection Sort

ALGORITHM SelectionSort(A[0..n — 1])

/ISorts a given array by selection sort
/[[Input: An array A[0..n — 1] of orderable elements
//Output: Array A[0..n — 1] sorted in ascending order
fori < 0Oton—2do

min <—i

for j < i+1ton—1do

if A[j]| < Almin] min < j
swap Ali] and A[min]

Time efficiency: O(n*2)
In place: Yes
Stability: yes

Department of ISE = BMS Institute of Technology and Mgmt

74

Brute-Force String Matching

e pattern: a string of m characters to search for

e text: a (longer) string of n characters to search in
* problem: find a substring in the text that matches the pattern

Brute-force algorithm

Step 1 Align pattern at beginning of text

Step 2 Moving from left to right, compare each character of
pattern to the corresponding character in text until
e all characters are found to match (successful search); or
* a mismatch is detected

Step 3 While pattern is not found and the text is not yet
exhausted, realign pattern one position to the right and
repeat Step 2

Department of ISE | BMS Institute of Technology and Mgmt 75

1. Pattern: 001011
Text: 10010101101001100101111010

2. Pattern: happy
Text: It 1s never too late to have a

happy childhood.

Department of ISE | BMS Institute of Technology and Mgmt 76

Pseudocode and Efficiency

ALGORITHM BruteForceStringMatch(T[0..n — 1], P[0..m — 1])

/[Implements brute-force string matching
/Mnput: An array T[0..n — 1] of n characters representing a text and

/l an array P[0..m — 1] of m characters representing a pattern
//Output: The index of the first character in the text that starts a
Il matching substring or —1 if the search is unsuccessful
fori < Oton —mdo

J <0

while j <m and P[j]=T[i + j]do

ji+1

if j = m return ;

return —1

Time effICIEHCVZ ©(mn) cornparisons (in the worst case)
.

Brute-rorce Strengths and
Weaknesses

e Strengths
— wide applicability
— simplicity
— vyields reasonable algorithms for some important problems
(e.g., matrix multiplication, sorting, searching, string

matching)

* Weaknesses
— rarely yields efficient algorithms
— some brute-force algorithms are unacceptably slow
— not as constructive as some other design techniques

Department of ISE = BMS Institute of Technology and Mgmt 78

MODULE — 2

DIVIDE AND CONQUER

introduction to The DQSign &
Analysis of Algorithms
o comon [t A

Department of ISE = BMS Institute of Technology and Mgmt 79

Divide-and-Conquer

The most-well known algorithm design strategy

1.

Divide instance of problem into two or more
smaller instances

2. Solve smaller instances recursively
3. Obtain solution to original (larger) instance by

combining these solutions

Department of ISE | BMS Institute of Technology and Mgmt 80

eCHNQ,
o s
& . D
£ FEN
o » O

S
2 2
ER— L

S
“Woaryae-®

* Divide: Divide the problem into a number of

sub problems

* Conquer: Conquer t
solving them recursive
sizes are small enoug

ne sub problems by
y. If the sub — problem

n, then solve the sub-

problem in a straight forward manner.

e Combine: combine the solutions to the sub-
problems to get the solution to the original

problem.

Department of ISE | BMS Institute of Technology and Mgmt

=) N . ISE Dept.
.. Divide and conquer involves three steps, .
at each level of recursion.

81

ISE Dept.

Transform Here

Gy
2
7,

& Z

2] =
S

= =

Divide-and-Conquer Technique (cont.)

Z S
© o7 —

‘ U ’

a problem of size n

subproblem 1 subproblem 2
of size n/2

of size n/2

a solution to a solution to
subproblem 1 subproblem 2

T(n) =2 T(w/b) + f (%) In general leads to a
the original problem . .
recursive algorithm!

where f(n) € ©(n?), d=>0

BMS Institute of Technology and Mgmt

Department of ISE

82

Divide-and-Conquer Examples

Sorting: merge sort and quicksort

Finding min and max element in an array
Binary search

Multiplication of large integers

Matrix multiplication: Strassen’s algorithm

Department of ISE = BMS Institute of Technology and Mgmt

83

PNE,
2
(3%

,’-3
e
Y

.o

k.4 General Divide-and-Conquer Recurrence

T(n) =aT(/h) + f(n) where f(n) € O(nY), d=>0

Master Theorem: Ifa<b?, T(n) € O(n?)
Ifa=b?, T(n) € O(n?log n)

Ifa>b?, T(n)eoN8b?)

Note: The same results hold with O instead of ©.
o(n*2)
Examples: T(n) =4T(n/2) +n = T(h) € ? ©(n*2log n)
T(n) =4T(n/2) + 2= T(n) € ?
T(n) =4T(n/2) + * = T(n) € ?

O(n™3)

Department of ISE | BMS Institute of Technology and Mgmt 84

1=
@
3

ISE Dept.

Merge Sort Algorithm

Mergesort(low, high)

//Given an array A of n elements. This algorithm sorts the elements in
//ascending order. The variables low and high are used to identify the
//positions of first and last element in each partition.

1. If (low< high)

2. mid = (low+high)/2;

3. Mergesort (low,mid);
4. Mergesort(mid+1,high);
5. Merge(low,mid,high);

6. Endif

7. Exit

Department of ISE | BMS Institute of Technology and Mgmt 85

Merge Algorithm

erge(low mid, high)

// The variables low, mid, and high are used to identify the
portions of elements in each partition.

1. |Initialize i=low, j= mid+1, h=low;
2. while ((h <= mid) && (j <= high))
3. if(a[h] <alj])

bli++] = a[h++];

else

b[i++] = afj++];

Department of ISE | BMS Institute of Technology and Mgmt 86

4.

5.

Cont...

if (h > mid)
for(k = j; k <= high; k++)
b[i++] = a[k];
else
for (k = h; k <= mid; k++)
b[i++] = a[k];
for (k = low; k <= high; k++)
alk] = b[k];

Department of ISE | BMS Institute of Technology and Mgmt

87

ISE Dept.

Transform Here

Mergesort

e Split array A[0..n-1] into about equal halves and make
copies of each half in arrays Band C

e Sort arrays B and C recursively
 Merge sorted arrays B and C into array A as follows:

— Repeat the following until no elements remain in one of the arrays:

* compare the first elements in the remaining unprocessed portions
of the arrays

e copy the smaller of the two into A, while incrementing the index
indicating the unprocessed portion of that array

— Once all elements in one of the arrays are processed, copy the
remaining unprocessed elements from the other array into A.

Department of ISE = BMS Institute of Technology and Mgmt 88

Mergesort Example

83297154

8329

N

7154

VANV

/\ /\ /\ /\

VERVAVARY;

N/ N/

2389

1457

~,

1234578 9

Department of ISE

BMS Institute of Technology and Mgmt

ISE Dept.

Transform Here

89

T(n) = an ifnn -1 otherwise
T(3)+7(

Department of ISE | BMS Institute of Technology and Mgmt 90

All cases have same efficiency: O(n log n)

Number of comparisons in the worst case is
close to theoretical minimum for comparison-

based sorting:

|_Iog2 nl = n log,n -1.44n

Space requirement: ©(n) (not in-place)
Can be implemented without recursion

Department of ISE

BMS Institute of Technology and Mgmt

91

ISE Dept.

Transform Here

Quicksort

e Select a pivot (partitioning element) — as the first element

¥ U /j
g N
Alil=p Ali]>p

N N /
e NG
Ali]=p Ali]zp

e Exchange the pivot with the last element in the first (i.e., <)
subarray — the pivot is now in its final position

e Sort the two subarrays recursively

* Note: Invented b
Department of ISE | BMS Institute of Technology and Mgmt 92

ISE Dept.

Transform Here

Quick Sort Algorithm

Quick sort(low, high)

// A is an array of elements.

// The variables low and high are used to identify the positions of first and
// last elements in each partition.

If(low< high) then
J= partition(low, high)
Quick sort(low, j-1)
Quick sort(j+1, high)
End if
Exit

Department of ISE | BMS Institute of Technology and Mgmt 93

ISE Dept.

~Partition Algorithm

ltion(low, high)

//This procedure partitions the element into two lists and places the pivot
//element into a appropriate place. Low = first element of the array, high =
//last element of the array, a[low] = pivot.

Step 1. Set pivot = a[low];
i=low +1;
J = high;
Step 2. Repeat step 3 while (afi] < pivot && i < high)
Step 3. i++;
Step 4. Repeat step 5 while (a[j] > pivot)
Step 5. j--;
Step 6. If(i<j)
swap ali] and alj]
go to step 2
else

swap alj] and pi

. Department of ISE | BMS Institute of Technology and Mgmt 94
Step 7. Return (j)

Quicksort Example

531982 47
23145897
1234 789

4

Department of ISE | BMS Institute of Technology and Mgmt

95

ISE Dept.
Transform Here

Analysis of Quicksort

e Best case: split in the middle — ©(n log n)
* Worst case: sorted array! — O(n?) T(n) = T(n-1) + ©(n)
» Average case: random arrays — ©O(n log n)

* |Improvements:
— better pivot selection: median of three partitioning
— switch to insertion sort on small subfiles
— elimination of recursion
These combine to 20-25% improvement

* Considered the method of choice for internal sorting of large
files (n = 10000)

Department of ISE = BMS Institute of Technology and Mgmt 96

ISE Dept.
Transform Here

Binary Search

Algorithm Binary_Search(A[O...n-1], Key)

Input: Given an array of n elements in sorted order and key is an element to be
searched.

Output: Returns the position of key element, if successful and returns -1
otherwise.

1. Setfirst =0, last =n-1
2. While (first < = last)
mid = (first +last) / 2
if (key == A[mid])
return (mid+1); // successful
else if (key < A[mid])

last =mid -1
else

first = mid+1
end while

3. return -1// unsuccessful

Department of ISE | BMS Institute of Technology and Mgmt 97

Analysis

Best Case: Best case occurs, when we are
searching the middle element itself. In that case,
total number of comparisons required is 1. there

fore best case time complexity of binary search
is Q(1).

Worst Case: Let T(n) be the cost involved to
search ‘n’ elements. Let T(n/2) be the cost
involved to search either left part or the right
part of an array.

Department of ISE | BMS Institute of Technology and Mgmt

98

Analysis

g—

T(n)= |a if n=1

-

T(n/2) +b otherwise

T(n/2) = Time required to search either the left
part or the right part of the array.

b = Time required to compare the middle element.

Where a and b are some positive integer constants.
T(n) = O(log ,n)

Department of ISE | BMS Institute of Technology and Mgmt

99

ISE Dept.
Transform Here

Analysis

Average Case:

The average case occurs when an element is found some where
in the recursive calls, but not till the recursive call ends.

The average number of key comparisons made by binary search
is only slightly smaller than that in this worst case.

T(n) =log ,n

The average number of comparison in a successful search is
T(n) =log ,n -1

The average number of comparison in a unsuccessful search is
T(n) =log ,n +1

Department of ISE = BMS Institute of Technology and Mgmt 100

s sAlgorithm for straight forward maximum anc
minimum

StraightMaxMin(a,n,max,min)
// set max to the maximum and min to the minimum of a[1:n].

{

max := min := a[1];
fori:=2tondo

{

if(a[i] > max) then max := ali];
if(a[i] < min) then min := ali];

101

BMS Institute of Technology and Mgmt

Department of ISE

Analysis

* This algorithm requires 2(n-1) element

comparisons in the best, average, and worst
cases.

* Now the Best case occurs when the elements
are in increasing order. The number of
element comparisons is n-1.

 The worst case occurs when the element are
in decreasing order. In this case number of
comparisons is 2(n-1).

102

of Gy
\J
& ¢
2 A

S-S

-) >

= =>;<=\\—//=
]

Elnfling maximum and minimum using
~ divide and conquer technique

Algorithm max_min(i, j, max, min)

{

// Input: a[1:n] is a global array. Parameters i and j
are integers, 1<=i <= j<=n.

// output: to set max and min to the largest and
smallest values in ali: j], respectively.

If (i == j) then // Small(P)
{ max = min < A[i];

} Department of ISE = BMS Institute of Technology and Mgmt 103

" &l8 if (i=j-1) then // Another case of Small(P)

2 3 ”
= v&f\! 5y EE? -
) Tl N g
TR SRR
By a0
“Wears wo-°

if (A[i] < A[j]) then
{
max < A[j]
min €< Ali]
}
else
{
max < A[i]
min < A[j]

} Department of ISE | BMS Institute of Technology and Mgmt 104

// if P is not small, divide P into sub problems.
Find where to split the set

mid := (i+j)/2;
// Solve the sub problems.
max_min(i,mid,max,min);
max_min(mid+1, j, max1,minl);
// Combine the solutions
if(max < max1) then max := maxl;
if(min > minl) then min:= min1l;
}

} Department of ISE = BMS Institute of Technology and Mgmt

//

105

ISE Dept.

Analysis

0 n=1
T(n)= J1 n=2
T(n/2) + T(n/2) + 2 n>2

When n is a power of two, n = 2 for some positive integer k, then
T(n) =2T(n/2) + 2
= 2T(2D) +2
=2(2T(2%2) +2) + 2
=22T(2%2) + 22+ 2
=23T(2%3) + 23 + 22+ 2

= k-1 T(zk-(k-l)) +2k2 4okl _ 4 21
= 2kl 4ok24_ _ - ¢ 21

=2.(2¥1=1)/ 2-1 = O(n)

Department of ISE | BMS Institute of Technology and Mgmt 106

Consider the problem of multiplying two (large) n-digit integers
represented by arrays of their digits such as:

A =12345678901357986429 B =87654321284820912836

The grade-school algorithm:
a, a,.. a,
b, b,.. b,
(dlo) d11d12 dln
(dZO) d21d22 d2n

(an) dnldnz dnn

Efficiency: ©(n?) single-digit multiplications

Department of ISE = BMS Institute of Technology and Mgmt

107

First Divide-and-Conquer
Algorithm

A smaII example: A * B where A=2135and B=4014
=(21-10% + 35), B=(40-10% + 14)
So,A B=(21:10%+35) (40-10%+14)
=21 40-10*+(21 14+35 40)-10°+35 14

In general, if A= A,A,and B =B;B, (where A and B are n-digit,

A, A,, B, B, are n/2-digit numbers),
A B=A, B;10"+(A, B,+A, B,)-10"2+A, B,

Recurrence for the number of one-digit multiplications M(n):

M(n) = 4M(n/2), M(1) =
Solution: M(n) =

Department of ISE = BMS Institute of Technology and Mgmt

108

Second Divide-and-Conquer
Algorithm

A*B=A,*B;-10" + (A, * B,+ A, * B,) -10"2+ A, * B,

The idea is to decrease the number of multiplications from 4 to 3:
(A, +A,)*(B;+B,)=A;, B;+(A; *B,+A,*B;)+A, B,

l.e,, (A, *B,+A,*B;)=(A;+A,) *(B;+B,)-A; B,-A, B,
which requires only 3 multlpllcatlons at the expense of (4 1) extra
add/sub.

Recurrence for the number of multiplications M(n):
M(n) =3M(n/2), M(1) =
Solution: M(n) = 3log2n = plog 23 = n1.585

Department of ISE = BMS Institute of Technology and Mgmt 109

Example of Large-Integer
Multiplication

2135 + 4014

= (21*10"2 + 35) * (40*10"2 + 14)
= (21 40)*10"4 + c1*10"2 + 35 14
where c1 = (21+35)*(40+14) - 21 40-35 14, and
21*40 = (2*10 + 1) * (4*10 + 0)
=(2 4)*10"2+c2*10+1 0O
where c2 = (2+1)*(4+0)-2 4-1 0, etc.

Department of ISE | BMS Institute of Technology and Mgmt 110

ISE Dept.

Transform Here

Matrix Multiplication

* Brute-force algorithm

Ci1 Cpp d;; dyp b, by,
— *
Cr1 Cp dy; 9y b,, by,
k k k k
a;, * by +a,* by, a;, ¥ by, +a;,* by,
k k k k
ay, ¥ by +a,,* by, ay, * by, +a,,* by,

Efficiency class in general: ® (n3)
4 additions

Department of ISE | BMS Institute of Technology and Mgmt 111

ISE Dept.

Transform Here

Strassen’s Matrix Multiplication

e Strassen’s algorithm for two 2x2 matrices (1969):

Ci1 Cpp CERRCED) by, by,
- *
C1 Cp dy; 9 by, by,
Cl=E +1 +J-G C2=D+0G
C3=E+F C4=D +H +J-F
D = A1(B2 — B4)
E = A4(B3 - B1)

F = (A3 + Ad) B1

c-ia1+)4 7 muliicatons

H = (A3 — A1) (B1 + B2)
|= (A2 — A4) (B3 +B4) 18 additions
J=(A1 +A4)(B1 +B4)

Department of ISE | BMS Institute of Technology and Mgmt 112

SHHLE

Al=1,A2=2,A3=3,A4=4
B1=1,B2=2,B3=2,B4=2
1. D=A1(B2-B4) =1(1-2)=-1

= W N

E = A4(B3-B1) = 4(2-1) = 4
F=(A3+A4)B1=(3+4)1=7
G=(A1+A2)B4=(1+2)2=6

113

ISE Dept.
Transform Here

.H=(A3-A1) (B1+B2)=(3-1)(1+1) =4
.1 =(A2 — A4)(B3+B4) = (2-4)(2+2) = -8
.J = (A1+A4)(B1+B4) = (1+4)(1+2) = 15

C2=D+G=-1+6=5 C =
C3=E+F=4+7=11
C4=D+H+J-F=-1+4+15-7=11

Cl =E +|+J-G = 4+(-8) +15-6 =5 [}
5 5

Department of ISE | BMS Institute of Technology and Mgmt 114

“==Strassen’s Matrix Multiplication

Strassen observed [1969] that the product of two
matrices can be computed in general as follows:

COO C01 AOO AOl BOO BOl
— *
ClO C11 A10 Al B10 Bll
M; +M, - M+ M, M+ M.
M, + M, M; +M; -M,+ M,

Department of ISE | BMS Institute of Technology and Mgmt 115

M, = (Agy+ Aq) * (Byg + Byy)

M, = (Ajq + Ayy) * Bog
M3 = Agg * (Bgy - B1y)
M, = Ay * (Byg - Bgo)
Mg = (Ago + Agy) * By,
Mg = (A1 - Ago) * (Bgg + Bpy)

My = (Agy - Ayy) * (Byg + Byy)

Department of ISE | BMS Institute of Technology and Mgmt 116

ISE Dept.

Transform Here

My = Ay * (Byg - Boo)

4%2-1) = 4
AO0 A0l BOO BO1
: e 4 N ~
1 Mg = (Ago + Ag1) * Byy
2 1 1 =(1+2)*2 = 6
. / _ Yy, 9) L)
e N ~ ~ X
3 ! A Mg = (Alo'Aoo) * (Boo+ Bm)
4 2 1| 2 =(3-1)*(1L+1)=4
. AN Y, 9)L)
Al10 All B10 B11 |\/|7 — (A01'A11) % (Blo+ Bll)
=(2-4)*(2+2)=-8
M; = (Ago + Agg) * (Boo + Byy)
=@ +4)*(1+2) =15 C00 co1
A / N (O N
M, = (A + Ay * By [) 3 5 5
=@+4)rL =7 N7 = < S
M, + M]
MB:AOO*(Bm'Bll) { , IV, M; +M; -M,+ MG} ‘[11 11
:1*(1-2):-1 ~ J J

Department of ISE | BMS Institute of Technology and Mgmt 117

ISE Dept.

Transform Here

M, = Ay * (Byg - Bo)

4%(1-5) = -16

AO0O AO01 BOO BO1
4) e e I ~ ~
5 Mg = (Ago + Agy) * Byy
1 5 > =(2+1)*2 = 6
N ~ J " AN Y,
4 N N 4 N
3 - Mg = (Ao - Ago) * (Bgo + Boy)
4 1 2 =3-2)*5+2)=7
N AN % - AN %
A10 A11 B10 pRg11 M7 = (Ao1 - Ayy) * (Byo + Byy)
:(1-4)*(1+2):-9
My = (Ago + Ayg) * (Bgo + Byy)
N N O
M, +M, -M;+ M, M.+ M 6
M, = (A + Ay * By [Y, o H
=(3+4)*5 =35 < RO
M, + M -
M; =Ay, * (Bgy - Byy) { 2 W+ M2+M6} ‘[i
=2%(2-2) =0 ’ S

Department of ISE | BMS Institute of Technology and Mgmt 118

ISE Dept.

Transform Here
/71021 " 0101)
4110 2104
A = 0130 B =
2011
5021 1350
- / o _/
Al A2 Bl B2
4 N N 4 AVE N
10 21 01 01
41 71 10 21 71 04
~ <\ / ~ ~Z /
4 N N 4 N N
01 30 20 11
50 21 13 50
A3 A B3 B4

Department of ISE | BMS Institute of Technology and Mgmt 119

ISE Dept.

Transform Here

w441 D = Al (B2 - B4)

01 11
10 | , | 42 - el
41
10 | , |-10
41 54
6 0
9 4

2. E = A4 (B3 - B1)

Department of ISE | BMS Institute of Technology and Mgmt 120

= Analysis of Strassen’s Algorithm

If n is not a power of 2, matrices can be padded with zeros.

Number of multiplications:
M(n) =7M(n/2), M(1)=1
M(n) = 7M(2 k1)
=7[7M(2 ¥2)] = 7 2 M(2 ¥2)]
=7kM((2KK]=7% (1)

Solution: M(n) = 7'°¢ ;7= nlog 7= n2807 ys_ n3of brute-force alg.

Department of ISE | BMS Institute of Technology and Mgmt 121

dvantages and Disadvantages

* Difficult problems is broken down into sub
problems and each sub problem is solved
independently.

* |t gives efficient algorithms like quick sort,
merge sort, streassen’s matrix multiplication.

e Sub problems can be executed on parallel
processor.

Disadvantage

[t makes use of recursive methods and the

recursion is slow and complex.
122

ISE Dept.

Transform Here

Decrease-and-Conquer

The decrease and conquer technique is almost similar to the
divide and conquer technique, but instead of dividing the

problem into size n/2, it is decremented by a constant or
constant factor.

There are three variations of decrease and conquer
* Decrease by a constant

 Decrease by a constant factor

* Variable size decrease

The problems can be solved either top down (recursively) or
bottom up (without recursion)

Department of ISE | BMS Institute of Technology and Mgmt 123

Decrease by a constant

In this type of variation, the size of an instance
is reduced by the same constant ‘1’ on each
iteration. So, if a problem is of size ‘n’, then a
sub problem of size ‘n-1" is solved first but
before a sub sub problem of size ‘n-2’ is solved
and so on.

Department of ISE = BMS Institute of Technology and Mgmt

124

Decrease by a constant

1 2 n
l Problem of Size n
il | ... n-1

Sub Problem of Sige (n —1)

Solution to sub problem

v | y

Solution to the Original

Proplem
Department of ISE | BMS Institute of Technology and Mgmt

ISE Dept.

Transform Here

125

Decrease by a constant

Example: Consider a problem for computing a "
where n is a positive integer exponent

Let f(n)=a™"
a"=anl. 3

— -2
=a" .a.a3 F(n){‘(n-l).aifml

=a"3 . 3.a.a3 2 fin=t

=3.a.4a.a...nhtimes

The above definition is a recursive definition i.e, a top down approach

Eg: Insertion sort, Depth First Search, Breath First Search,
Topological Sq

Department of ISE = BMS Institute of Technology and Mgmt 126

Decrease by a constant factor

* |n this type of variation, the size of instance is
reduced by a constant factor on each iteration
(most of the case it is 2).

e So, if a problem of size ‘n’ is to be solved then
first the sub problem of size n/2 is to be solved
which in-turn requires the solution for the sub

sub problem n/4 and so on.

Department of ISE | BMS Institute of Technology and Mgmt

127

1 | ... n/2

Sub Problem of Sige (n/ 2)

Solution to sub problem

Solution to the Original

Proplem
Department of ISE | BMS Institute of Technology and Mgmt

128

Decrease by a constant factor .

Example: Consider a problem for computing a"

As the problem is to be halved each time (Since
the constant factor is 2, to solve a ™ first solve a"/?

_ but before solve a"4and so on.

g—

an = [(@”2)2 ifnisevenand>1
—(a™1/2) 2 if nis odd and > 1
a ifn=1

——

Department of ISE | BMS Institute of Technology and Mgmt 129

w.Pecrease by a constant factor

SSes BB

The efficiency of this variation i.e decrease by a
constant factor is O(log n) because, the size is
reduced by at least one half at the expense of

no more than two multiplications on each
iteration

Eg: Binary search and the method of bisection,
Fake coin problem

Department of ISE | BMS Institute of Technology and Mgmt 130

Variable size decrease .

In this type, the reduction in the size of the
problem instance is varied from one iteration to
another.

Eg: Euclid’s algorithm for computing
GCD of two nos.

gcd (m,n) ={gcd (n,mmodn) ifn>0
m if n=0

Eg: Computing a median, Interpolation Search
and Binary Search Tree

Department of ISE | BMS Institute of Technology and Mgmt 131

DAGs and Topological Sorting

A dag: a directed acyclic graph, i.e. a directed graph with no

(directed) cycles

O 0 O
| ‘ | not a dag
O O

Arise in modeling many problems that involve prerequisite
constraints (construction projects, document version control)

A

Vertices of a dag can be linearly ordered so that for every edge its
starting vertex is listed before its ending vertex (topological
sorting). Being a dag is also a necessary condition for topological

sorting to be possible,

132

Topological Sorting Example .

Order the following items in a food chain

/

Department of ISE | BMS Institute of Technology and Mgmt 133

DFS-based Algorithm

DFS-based algorithm for topological sorting

— Perform DFS traversal, noting the order vertices
are popped off the traversal stack

— Reverse order solves topological sorting problem
— Back edges encountered?— NOT a dag!

Example:

» »
» »

Department of ISE | BMS Institute of Technology and Mgmt 134

Source Removal Algorithm

Repeatedly identify and remove a source (a vertex with no
incoming edges) and all the edges incident to it until either no
vertex is left or there is no source among the remaining
vertices (not a dag)

Example: 1 ?\A?\l ?
Efficiency: same as efficiency of the DFS-based algorithm, but how would you
identify a source? How do you remove a source from the dag?

Example 2 e\a/?
O o

Department of ISE | BMS Institute of Technology and Mgmt 135

Source Removal Algorithm

Topological Sort(G)

1.

Find the indegree INDG(n) of each node n of
G.

Put in a queue Q all the nodes with zero
indegree.

Repeat step 4 and 5 until G becomes empty.

4. Repeat the element n of the queue Q and

add it to T (Set Front = Front +1).

Department of ISE = BMS Institute of Technology and Mgmt 136

Source Removal Algorithm

5. Repeat the following for each neighbour, m of
the node n

a) Set INDEG(m) = INDG(m)-1
b) If INDEG(m) = 0 then add m to the rear end
of the Q.
6. Exit.

Note: For Problems refer class notes

Department of ISE = BMS Institute of Technology and Mgmt 137

MODULE - 3

GREEDY METHOD

introduction to The Design &
Analysis of Algorithms
o comon [kt Al

Department of ISE = BMS Institute of Technology and Mgmt 138

Greedy Method

Approach for Solving problem
Used for Solving Optimization Problem

Optimization Problem : Problems which demands
minimum/maximum results

« Example:

12 hrs Minimum cost

A -B

S1 S2 S3 S4 S5......

Optimal soltén\\“Feasible solutions

There will be only one minimum solution

Department of ISE | BMS Institute of Technology and Mgmt 139

m Strategies used for Optimization
Problem

* Greedy Method
* Dynamic Programming
* Branch and Bound

Department of ISE | BMS Institute of Technology and Mgmt 140

Greedy algorithms, construct a solution through a
sequence of steps, each step expanding a partially
constructed solution obtained so far, until a complete
solution to the problem is reached.

» feasible -It has to satisfy the problem s constraints

» locally optimal - it has to be the best local choice
among all feasible choices available on that step

» Irrevocable - once made, It cannot be changed on
subsequent steps of the algorithm

24-08-2020 Department of ISE = BMS Institute of Technology and Mgmt 4

141

ISE Dept.
Transform Here

General method control abstraction
Algorithm Greedy(a, n)

// a[1..n] contains the ‘n’ inputs

{

Solution :=0; //Initialize the solution

fori:=1tondo

{
X : = Select(a);
If Feasible(Solution, x) then
Solution:= Union(Solution, x);
}
Return Solution;

}

Department of ISE | BMS Institute of Technology and Mgmt 142

ISE Dept.

Transform Here

| Applications of the Greedy Strategy

* Optimal solutions:

— change making for “normal” coin denominations
— minimum spanning tree (MST)

— single-source shortest paths

— simple scheduling problems

— Huffman codes

e Approximations/heuristics:
— traveling salesman problem (TSP)
— knapsack problem
— other combinatorial optimization problems

Department of ISE | BMS Institute of Technology and Mgmt 143

Differences b/w Divide and conquer and greedy
Method

s conquer ' Cresay algorithm
Divide and conquer is used ¢t L ' P o,
obtain a solution to given . : g’ﬁ;d&’nﬁn Eﬂimd Is uﬁ‘?d to obtain
problem. :'~.:P AN solution. ‘

In this technique, the problem is In greedv methad 4. e
divided into small subproblems. sol&i;djifsn;ﬁggt:dsmfmble
These subproblems are solved solution picked up. TR
independently. Finally all the = = =~ = ® =
solutions of subproblems are e

collected together to get the
solution to the given problem.

In this method, duplications in
subsolutions are neglected. That
means duplicate solutions may

be obtained.

ted

Divide and conquer is less
efficient because of rework on

solutions.

Examples : Quick sort binary
search

144

Change-Making Problem

* Problem Statement: Given coins of several denominations
find out a way to give a customer an amount with fewest
number of coins.

« Example: if denominations are 1,5,10, 25 and 100 and the
change required is 30, the solutions are,

« Amount: 30

e Solutions:3x10 (3coins)
6x5 (6coins)
1x25+5x1(6coins)
1x25+1x5(2coins)
The last solution is the optimal one as it gives us change only with 2

colins. Department of ISE = BMS Institute of Technology and Mgmt 145

ISE Dept.

Transform Here

Change-Making Problem

Given unlimited amounts of coins of denominations d, > ... >d
give change for amount n with the least number of coins

Example: d,=25c, d,=10c, d;=5c, d,=1c and n =48c

Greedy solution is optimal for any amount and “normal’ set of
denominations

Solution: <1, 2,0, 3>

Department of ISE | BMS Institute of Technology and Mgmt 146

ISE Dept.
Transform Here

Algorithm coinchange() {2 5 10 1} for 30c
//Input: Denomination d[1] > d[2] > : Y

d[3] ... d[n]
//Amount to obtain change — C

cashier’s Algorithm

n=3, C-3 1

= ot [1) = 30\d[|] . 30\95 s {
// Output: The optimal number of " C:CJaf): 0425:5
coins for change of C, is stored in
Coinsli] E liw SINAE ,;l i)z §|w:=0
; - ¢ J.af: 505
fori<1tondo \ W [\
{ (-3 Cotrt [3) 5)i= 5
CoinsJi] = C/d[i]; | b o) wil
¢ = ¢ mod d[i] g
Print coinsl[i]

Colry {\ 1,0, 5}

Department of ISE | BMS Institute of Technology and Mgmt 147

ISE Dept.

Transform Here

Change-Making Problem

For example, d1 = 25¢, d2 = 10c, d3 = 1c¢, and n = 30c

Solution: <1, 0, 5>

May not be optimal for all denominations

Department of ISE | BMS Institute of Technology and Mgmt 148

Knapsack Problem
(Fractional knapsack problem)

Given n objects and a knapsack or bag. Object I has a
weight wi and the knapsack has a capacity m. if the
fraction Xi, 0<=Xi<=1, of object I Is placed into the
knapsack, then a profit of Pi*Xi Is earned.

The objective Is to maximize the total profit earned.
Since the knapsack capacity is m, we require the total
weight of all chosen objects to be at most m.

Department of ISE = BMS Institute of Technology and Mgmt

149

Knapsack Problem - 1

Obtain the optimal solution for the knapsack
problem using greedy method given the
following:

M =15

n=>7/

pl,p2,p3,p4,05,p6,p7 = 10,5,15,7,6,18,3
wlw2,w3,w4 w5 woé,w/=2,35,7,1,4,1

Department of ISE = BMS Institute of Technology and Mgmt 150

n - ’ — ISE Dept.
M =15 S Dept,

P
C =P, , Ps,P'-\,?S)?e-P:;)z (10,5, 15, 7. ¢, 12, 3)

(plo N}.) w3’m(-"'p5)w6'w4): (Q,-?), 5-) q’)‘) % 3 ')

Number 0 obJe,c'L =N=7F

Cc»Pac;t’j 0} baﬂ * M=ig

Obj et 1j Q |3 |lud s it
__'EL 10 J 5 15 | +|6 |18 |3
R ¢ | > | SN ST

4 3 | 1|6 [45]3
wloi | 5 ["”

There are several greedy methods to obtain the feasible solutions.

Department of ISE = BMS Institute of Technology and Mgmt 151

Pt (7) | gt () ;

- q blof | 1 | a |3 |u[5[8[?
a BITAC

e) |65 |161% -

5 J CHRERAE:

L51 3

‘1 10 o 1 | 5|1 FRTE
; L s
\ HX]: L}- LI- (G0 o Seftings 10
its = W Solutiony_ 1, 4/7,0,1,0)= (1, 0,1, 0.57,0,1,0)

' olution using this metho i 3,x4,x5,x6,x7) = (1, 0,1, 0.57,0,1,0)

with profit = 47

Department of ISE = BMS Institute of Technology and Mgmt 152

Objed | profit (p m’ahr[wi) Qcmmna Keig
B nmn
5 ; | 5-121y p_b.l_“f;__'w&ﬂ.j@i}
| NN RN
T 3 ly-1=13 __?L_”_l_) 'r‘ |
| 10 Q 1392 I Q,354‘H
- ENENE
’ c 3 I-3:8 J’“” 3| 1] 6|93
g | MYy-IQ 4 H-4=0
Eo’f—i;s = Kk Solution Vector = (1, 1,4/5,0,1,1,1)= (1, 1,0.8,0,1,1,1)

Optimal solution using this method is (x1, x2, x3,x4,x5,x6,x7) = (1, 1,0.8,0,1,1,1)

with profit = 54
Optimal solution is not guaranteed using method 1 and 2

Department of ISE = BMS Institute of Technology and Mgmt 153

Mi Selus pbjed jofth maximum (Pi]w0)

e
.
| Objcﬂ' ’Pmk’t’c(P‘,) p@’ar\r[n.‘) {emaim‘na ,Qda}\r
3 g ~ 5
> 6 | 5= 1y i I ;
| 0 2 -2 |2 Objer |) | 2|3 |45 il
b L '+ J2-Y:- & .- 0 | g ’-|5g | ié 18 13
4 L s | S-SeRUEN 5[5 | #[L)1
+ 3 | 3-] = LB — ’; : + 17 E
Q OX1-fF:aad o & 9-2:0 o wi 5 \‘6?’
Rlofits = @ Solution Vector :21,L 2/3,1,0,1,1,1)=(1, 0.67,1,0, 1,1,1)

Optimal solution is (x1, x2, x3,x4,x5,x6,x7) = (1, 0.67,1,0, 1,1,1)
with profit [1*10+0.67*5+1*15+0*7+1*6+1*18+1*3]= 55.34
Weight=[1*2+0.67*3+1*5+0*7+1*1+1*4+1*1]=15
This greedy approach always results optimal solution

Department of ISE = BMS Institute of Technology and Mgmt

154

Knapsack Problem
(Fractional knapsack problem)

Given n objects and a knapsack or bag. Object I has a
weight wi and the knapsack has a capacity m. if the
fraction Xi, 0<=Xi<=1, of object I Is placed into the
knapsack, then a profit of Pi*Xi Is earned.

The objective Is to maximize the total profit earned.
Since the knapsack capacity is m, we require the total
weight of all chosen objects to be at most m.

Department of ISE = BMS Institute of Technology and Mgmt

155

Knapsack problem

Maximize) <;<y, PiXi

Subject to)1 <<, WIXi < m

The profits and weights are positive numbers.

Department of ISE = BMS Institute of Technology and Mgmt 156

Algorithm Greedy Knapsack(m,n)
//p[1:n] and w[1:n] contain the profits and weights respectively, of the n
objects ordered such that p[i}/w[i] >= p[i+1]/w][i+1].
// m is the knapsack size and x[1:n] is the solution vector
{
fori:=1to ndo x[i] := 0.0; //Initialize x
U := m://sack capacity
fori:=1tondo
{
if (W[i] > U) then break; // weight of an object is greater than sack capacity
X[i] := 1.0; U:=U-wl[i];
}
If(i<=n) then x[i]:=U/wl[i];
}

Knapsack Algorithm 2k

Analysis: Disregarding the time to initially sort the object, each
of the above strategies use O(n) time

Department of ISE = BMS Institute of Technology and Mgmt

157

Problem - 2

Obtain the optimal solution for the knapsack
problem using greedy method given the
following:

M=40 , n=3
wl w2 w3 = 20,25,10
pl,p2,p2 = 30,40,35

Department of ISE = BMS Institute of Technology and Mgmt 158

Given an array of jobs where every job has a deadline
and associated profit, the job is to be finished before
the deadline. It is also given that every job takes
single unit of time. So the minimum possible deadline
for any job is 1. the objective is to maximize total
profit, provided only one job can be scheduled at a
time.

Department of ISE = BMS Institute of Technology and Mgmt

159

Problem 1

For the following sequence of job, give the snapshot of
execution which will achieve maximum profit.

Jobs n=5
pl,p2,p3,p4,p5 = 20,15,10,1,6
dl,d2,d3,d4,d5= 2, 2, 1, 3,3

Department of ISE = BMS Institute of Technology and Mgmt 160

Job Sequencing with Deadlin

Algorithm GreedyJob(d, J, n)
[/ Jis a set of jobs that can be completed by their deadlines,

J = {1}
for i:=2tondo

{

if (all jobs in J U {7} can be completed
by their deadlines) then J:= J U {i};

}
}

Analysis:The computing time taken by this algorithm is O(n?)

Department of ISE = BMS Institute of Technology and Mgmt 163

ISE Dept.

Minimum Spanning Tree (MST) (2

Spanning tree of a connected graph G: a connected acyclic
subgraph of G that includes all of G’s vertices

TARANI

Department of ISE = BMS Institute of Technology and Mgmt 164

ISE Dept.

Transform Here

Minimum spanning tree of a weighted, connected graph G: a
spanning tree of G of the minimum total weight

Example:

6 @ 7
&‘ \ 1
4 1 4 1
, 2
/ o

COST=11 COST=6

Department of ISE | BMS Institute of Technology and Mgmt 165

ISE Dept.
Transform Here

(—0® @O0 (@—O

5 2 2 5 5 2
0 3 Q o 3 Q . 3 . 9 0
graph WiT) =6 WiTy) =9 wiT) =8

Graph and its spanning trees, with 7, being the minimum spanning tree.

Note: MST of graph with n vertices will have exactly n-1 edges

Department of ISE | BMS Institute of Technology and Mgmt 166

Minimum Cost spanning Tree
algorithms

* Prim’s algorithm
e Kruskal’s algorithm

Department of ISE | BMS Institute of Technology and Mgmt 167

ISE Dept.

Transform Here

Prims Algorithm
Example

Prims Algor

Department of ISE | BMS Institute of Technology and Mgmt 168

ISE Dept.
Transform Here

Algorithm Prim(G)
Vt € {v0} //Set of visited vertices
Et &2
fori€< 1to |V|-1do

find minimum edge e between
vertices v and u such thatV is in Vt and
uisinV-Vvt

//Add u to Vt
Vt € Vt U {u}
//Add the edge to the spanning tree
Et € EtU {e}

Prims Algorithm

Department of ISE | BMS Institute of Technology and Mgmt 169

Tree vertices Remaining vertices Hlustration

a(—, —) b(a. 3) ¢(—., o) d(—, o)
e(a, 6) f(a, 5)

b(a, 3) chb, 1) d(—, o0) e(a, 6)
f(b, 4)
c(b, 1) di(c. 6) e(a, 6) f(b,. 4)
f(b, 4) d(f,5) ef, 2)
e(f, 2) d. 5
dt. 5) etting: 171

Efficiency

» The time efficiency of depends on the data
structures used for implementing the priority
queue and for representing the input graph.

» Since we have implemented using weighted

matrix and unordered array, the efficiency is
o(|Vv?]).

» If we implement using adjacency list and the
priority queue for min-heap, the efficiency is
O(|E|log|V]).

BMS Institute of Technology and Mgmt

172

] Kruskals algorithm finds MST of a weighted
connected graph G=<V,E> as an acyclic subgraph
with |V| - 1 edges. Sum of all the edges weight
should be minimum.

The algorithm begins by sorting the graph’s
edges in increasing order of their weights.

Then it scans this sorted list starting with the
empty sub graph and it adds the next edge on
the list to the current sub graph, if such an
inclusion doesn’t create a cycle and simply
skipping the edges.

Department of ISE = BMS Institute of Technology and Mgmt

173

O===0 o===0
o, © 0===0
N
O===ld =) Qo
\ / I\ /
X | X
-\ RSN\
e o L ») o
Brute Fore way: e oS
There are 16 possibilites. :\\ | ,’
List out all possibilites ; \ ; of =
and choose the smallest
Qu==0Q Q L=
I\ | /
I \ | /
§ N \/
e © Q===
Kruskal’s Algorithm

Qee=@

Department of ISE | BMS Institute of Technology and Mgmt

ISE Dept.

Transform Here

174

ISE Dept.

Transform Here

Kruskal’s Algorithm
Example

be ¢f ab bl of af dl ac od de
1 2 3 4 4 5 5 6 6 B

Department of ISE | BMS Institute of Technology and Mgmt 175

ISE Dept.
Transform Here

Edge Lengths JAlgorithm Kruskal (G)

l}(éc 1 Sort E in ascending order of weights
f>e 2 Et € 0 //no edges selected
a=>b 3 encounter € 0 //no of edges selected
b—>f 4 k&0
c=>f 4 while encounter< |V| -1
a=>f 5 k€ k+1
c=>f 5 if Et U {eik} is acyclic
a=—e G Et € Et U {eik}
c=d 6 encounter +=1
e=>d 8 return Et
Kruskal’s Algorithm

Department of ISE | BMS Institute of Technology and Mgmt 176

ISE Dept.

Transform Here

Time complexity

The crucial check whether two vertices belong to the
same tree can be found out using union -find algorithms.

 |Ifthe graph is represented as an adjacency
matrix then the complexity of kruskal
algorithm is °

 |f you use binary heap and adjacency list the
complexity can be of the order of ElogV.

Department of ISE | BMS Institute of Technology and Mgmt 177

Shortest paths — Dijkstra’s
algorithm

The Dijkstra’s algorithm finds the shortest path

from a given vertex to all the remaining vertices
in a diagraph.

The constraint is that each edge has non-
negative cost. The length of the path is the sum
of the costs of the edges on the path.

We have to find out the shortest path from a
given source vertex ‘S’ to each of the
destinations (other vertices) in the graph.

Department of ISE = BMS Institute of Technology and Mgmt

178

A E ISE Dept.
. 3Example
S

1 2 3 4
5
Initially S ?41 ol o o0 0
d 761 60 | 100 | 10
100
10 60 10
10
20
50 20
5

4
Department of ISE | BMS Ins_ _.e of Technology and Mgmt 179

A E ISE Dept.
. 3Example
S

50

]
Department of ISE | BMS Ins_ _.e of Technology and Mgmt 180

ISE Dept.

Transform Here

4 3
Department of ISE | BMS Ins_ _.e of Technology and Mgmt 181

A E ISE Dept.
. 3Example
S

50

4 3
Department of ISE | BMS Ins_ _.e of Technology and Mgmt 182

all other nodes

& ‘i Exa m p I e Final distance form note 1 to 1SE Dept. .

1 2 3 4 5

50

4 3
Department of ISE | BMS Ins_ _.e of Technology and Mgmt 183

Tree vertices Remaining vertices

a-0) b@3d) o(-) d@7) e °°>f\/\

b(a,3) c(b,3+4) d(b,3+2) e(-,) 3 SC 6
- d 4 e
d(b,5) c(b.7) e(d,5+4) @%@\ 4 Q%
2 5
7 </4

c(b,7) e(d,9) ; %
e(d,9) 7 4

Department of ISE = BMS Institute of Technology and Mgmt 184

Dijkstra’s algorithm

Dijkstra’s(s)
// Finds shortest path from source vertex to all other vertices

//Input: Weighted connected graph G=<V,E> with nonnegative

weights and its vertices s

//Output: The length of distance of a shortest path from s tov

{
1. fori=1tondo// Intialize

S[i] =0;
dli] = als][il;

2.S[s] =1; //Assume 1 as the source vertex
d[s] = 1;

BMS Institute of Technology and Mgmt

185

Dijkstra’s algorithm

3.fori=1tondo
{

Choose a vertex u in v-s such that d[u] is
minimum
S=sl u
for each vertex vin v-s do
d[v] = min{ d[u], d[u]+c[u,v]}

BMS Institute of Technology and Mgmt 186

Key points on Dijkstra’s
algorithm
Doesn’t work for graphs with negative weights

(whereas Floyd’s algorithm does, as long as
there is no negative cycle).

‘Applicable to both undirected and directed graphs. ‘

Efficiency O(|V?|) for graphs represented by weight
matrix and array implementation of priority queue

O(|E|log|V|) for graphs represented by adj. lists and
min-heap implementation of priority queue

Department of ISE = BMS Institute of Technology and Mgmt 187

MODULE -4

DYNAMIC PROGRAMMING

introduction to The DQSign &
Analysis of Algorithms
o comon [t A

Department of ISE = BMS Institute of Technology and Mgmt 188

ISE Dept.

Transform Here

Dynamic Programming

Invented by American mathematician Richard Bellman in the
1950s to solve optimization problems

Optimization Problem : Problems which demands minimum/maximum
results

Dynamic “ means “changing”
Programming” means “planning”

Dynamic Programming is a general algorithm design technique
for solving problems with overlapping sub-problems.

Main idea:
-Solve smaller instances once.
-Record solutions in a table.
-Get solution to a larger instance from some smaller instances.
-Optimal solution for the initial instance is obtained from that table.

Department of ISE = BMS Institute of Technology and Mgmt 189

ISE Dept.
Transf

asform Here

Principle of Optimality

Definition [Principle of optimality] The principle of optimality states
that an optimal sequence of decisions has the property that whatever the
initial state and decision are, the remaining decisions must constitute an
optimal decision sequence with regard to the state resulting from the first
decision.

Problems can be solved by taking sequence of
decisions to get optimal solutions

Department of ISE | BMS Institute of Technology and Mgmt 190

Example: Fibonacci numbers '

’ O i Nn:0
f0): 10 L

Atb(n-2) +§ib(n-) o 07 'j'f"_ ‘ e

s b ()

L g (need

yeur P 0,
rvtum Sib(n-) 4-Abn- 4

o

191

Example: Fibonacci numbers .

&I |abulalion Metrod - T
C————— et -)
i int b (inrn)

B Flo

! i (n<=)

5 yburn N,

Flo)=0. FCD=1 .

4—0r (;nf '[:Q; ;<.—n;i+—r)

—

L oer: FO-9) + €L
3
r durn €UA),

Department of ISE | BMS Institute of Technology and Mgmt 192

ISE Dept.
Transform Here

There is no special set of feasible solutions
in this method.

o e
,‘Mmmdamm&
 optim ju .
R i =
A:RW‘SSM ming will mwww n
W W of M‘ et

:

Department of ISE | BMS Institute of Technology and Mgmt 193

e ;&.

417 R
pivide and Conquer and Dynamic Programming

rs;. Divide and conquer
No.

- i ded into small
1;"'_"‘_ The problem is divi i

194

Examples of DP algorithms (=2

« Computing a binomial coefficient
e Longest common subsequence
e Warshall’s algorithm for transitive closure

e Floyd’s algorithm for all-pairs shortest paths

e Constructing an optimal binary search tree

e Some instances of difficult discrete optimization problems:
- traveling salesman
- knapsack

BMS Institute of Technology and Mgmt 195

Multistage Graph

A Multi stage graph G = <V,E> which is a directed graph. In
this graph all the vertices and partitioned into K stages
where K>=2.

In multistage graph problem we have to find the shortest
path from source to sink.

The cost of each path is calculated by using the weight given
along that edge.

In multistage graph can be solved using forward and
backward approach.

Department of ISE = BMS Institute of Technology and Mgmt

196

Department of ISE | BMS Institute of Technology and Mgmt 197

"‘ w
Y - b ‘“’
&] Y

t (1)

A e

2 {,t.u);m,,{ '+ Cost(u.a)a it 329
H+ coct(y,e) - Yita = F

« (s.5): Nn{ 64 Cost(H,3). 6437 =13

| S+ cost(u,9):948:8

* ‘ &, 6):
T o c) ﬂ"h{ g. + Cast (4.7)- 6 +F~ I3
+w"[".9): CRE- T

-

LN

44
-
-

. 44 e
e
ol .
1

. Ccort LQ“> 4 mhi 34 €t (3,4)= 343 =10
E Y ot (s.8) za4E =8

b b+ cost (3M) < 6+ F 218
coft (@,9) . an 5 Sk (3,5): &4 5 = (0

Wi B 4+ cast (2.6):-g+ § = I3

e (1) ming St ot(D3): 5 4@ 518
% R ¥ otk (@,8) 2 410 - |2

D)2 N®2@ d(1,0 = 2

", |
LR (. _ R R
TG a0, 5 |
d(2, 5) .', oy ’
A MW ..

. _‘\7" _: R ' oy r".:_-
| -

jy and Mgmt

PP VY N

Algorithm FGraph(G. k. n,p)

// The input is a k-stage graph G = (V| E) with n vertices
// indexed in order of stages. E is a set of edges and [z,]
/] is fhi’ cost of {1,7). p[l : k] 18 a minimum-cost path.

; 0202650 d(l o ':'

Codt = |
+

A
o

g
o
)
S
anlsc
5,

// Find a minimum-cost path.
p(1] == 1; plk] := n;
for j:=2to k—1do plj := d[plj —1];

199

ISE Dept.

(2,3)= @

cost ((2,4)- . - 0oat(2,2)"34% =%
) - vy ® oot (3.9 - 64> =% ©
E

Ls‘g)um‘ﬁf_ S+ ost(s,0):5+2=F = 3

.iv.l;—»- _ 5 s SOt (0,2): 3 §=% _
: - Cost La.ﬁ) il ie+cgst(z,s);8+a. s ®

. t +et(2,40= 1+* =19
"N"Q.G*'mu—(s,-r’ s gy 3 25 2%

o (D)

"

J 6+ wer (3,6) = 648 =N
. 5 gl A costr (2 4) = e =13
cost (4:6) - mni:‘—"’ mt'(:,f):lzj——'} Ty B
>V S (5 6y 24+ B2 D

oo
—
(2}

M (_5.‘\); Lol o T4 M\—C H,"’) = :}-Tc‘
3 4 cost(u,®) > 21 9

y and Mgmt 200

Algorithm BGraph(G. k. n.p)
// Same function as FGraph

beost[1] := 0.0;

for j:= 2 to ndo

{ // Compute beost|;|.
et r be such that (r, j) is an edge of
G and beost[r| + c[r, 3] is minimum;

beost(j] := beost[r] + c[r, j|;
(‘U] = T

/ (Find a minimum-cost path.
p

l]-‘ ,P[kl = Ny
for j := k— 1 to 2 do plj] = dp[j + 1]];

Department of ISE | BMS Institute of Technology and Mgmt

ISE Dept
Transform Here

201

ISE Dept.

Transform Here

Warshall’s Algorithm: Transitive Closure

Definition: The transitive closure of a directed graph with n vertices can be defined as the n

x n boolean matrix T = {t;}, in which the element in the i row and the

i column is 1 if there

exists a nontrivial path (i.e., directed path of a positive length) from the " vertex to the "

vertex; otherwise, t! is 0.

G ‘\b\/‘l a
N ‘ b
\\ A=
5 3 ¢
\&/ \9) d
(a) Digraph.

- -
OoCc o=
- 00 0D0n
OO0 —=-0n0n

a b c d
iR % ¥ 7
DIT ¥ 1 A
0O 0 0 O
LY @ 4 T

— -4

(b) Its adjacency matrix. (c) Its transitive closure.

Department of ISE

BMS Institute of Technology and Mgmt 202

Warshall’s Algorithm: Transitive
Closure

Constructs transitive closure T as the last matrix in the sequence
of n-by-n matrices RO, ..., Rk, .., RN where

RW)ji j] = 1 iff there is nontrivial path from i toj with only the first
k vertices allowed as intermediate

Note: that R® = A (adjacency matrix), R" = T (transitive closure)

Department of ISE = BMS Institute of Technology and Mgmt

203

Department of ISE BMS Institute of Technology and Mgmt 204

P Ot 18 9
QTO"D‘D))
Tl s 1 o1 ©O ©
s s B {1 o
12—3"‘
R s, v, MO\ A
- .y s R A
o - SR
\ n N
: e
w? 00%
=)
PR L
L IR TR
:\\\\\
e>1\\\.\
_3-0000\
B s ™

!Pt.
R[n,.{) = o oul E[u.iyos c—['»'))?
= © o (1 an VD) = 1

1

ﬂ)i
R {awd)- O oo = 1r-2) e [24Y

- ool Ve)
=

7 [1-)-= o oe(e(1.0)one e (.

— s el s a2y — 3

2—‘:‘.}3: O O% [&Ll,l—\) ons ey
= o og | VYV ana \'3: 1

eU2,')- O o [2(2.4D ana e{ya)

d
VII
:
4

= e s one 2D —) ’

P 2-3)= 00R [eGo.sDanarey.,y
= oo [af\éuj e n

R =-8): o0k [e(a.Danaecy 5

- ©Dog L‘ Ty d3:1

v

: \ * 4 ISE Dept.
P X » o Transform Here
© © o |
O O O ©
o) B

R[z,ﬂ: 0 DR[R(z,\)fm R(m)}
= Oop [OAMI) =D
R12.9): 0 or [e{z1) A1 eu,s)]
- 0 [o#o)-0
R{aw): 1 or[e(oD #7 R (1)
.\ o [om0 e)e]

Ry o ®Le(DA? £ (2))

= Q0 TODEA

gt|,\')—, o oce(e (1., m)ons (.5
- pooe(ly eamnag) =12

—

W [eU>wone eTuy
- o op | Vaona \')___l

(?-[\;Q\ m‘[S"‘..\) 22,7} O oF [e(2.4D ana efya)

= °°¢C\Mé e =

Department of ISE | BMS Institute of Technology and Mgmt

On the k-th iteration, the algorithm determines for every pair of
vertices i, j if a path exists from i and j with just vertices 1,...,k
allowed as intermediate

R&-1)i] (path using just 1,...,k-1)
R®i,j] = or
R*1[j k] and R[k,j] (path fromito k
and from k to j

using just 1,...,k-1)

Department of ISE = BMS Institute of Technology and Mgmt 207

Warshall’s Algorithm (matrix generation)(scoe:.

Recurrence relating elements R to elements of Rk js:

RM[i,j] = R¥1[,j] or (R*V[j,k] and R¥V[k,j])

It implies the following rules for generating R from Rk-1);

Rule 1 If an element in row i and column jis 1 in R1),
it remains 1 in R

Rule 2 If an element in row i and column j is 0 in R2),
it has to be changed to 1 in R if and only if
the element in its row i and column k and the element
in its column j and row k are both 1’s in Rl-1)

Department of ISE = BMS Institute of Technology and Mgmt

208

ISE Dept.

Transform Here

Warshall’s Algorithm (pseudocode and analysis)

ALGORITHM Warshall(A[l..n, 1..n])

[[Implements Warshall’s algorithm for computing the transitive closure
//Input: The adjacency matrix A of a digraph with n vertices

//Output: The transitive closure of the digraph
RO «— A

fork < 1tondo
fori < 1tondo
for j < 1tondo

RO, j]< R*D[i, jlor (R*D[;, k]and R*-D[k, j])
return RV

Time efficiency: O(n3) ‘

Department of ISE | BMS Institute of Technology and Mgmt 209

Floyd’s Algorithm: All pairs shortest paths

ISE Dept.

Transform Here

Problem: In a weighted (di)graph, find shortest paths between
every pair of vertices

Same idea: construct solution through series of matrices D, ...,
D (") using increasing subsets of the vertices allowed
as intermediate

Example:
. 2 7= 3 O ¢ 0 a b ¢ d
(a je——b - _ . - 4 -
v v a|l0 o 3 1 |0 10 3 4
'>l 657 . B2 05 bl2 0 5 6
g N v = 1"_—‘
Vs : ¢ 7 0 1 c|l7 7 0 1
&y "\2 d|6 « = 0 (6 16 9 0|
(a) Digraph. (b) Its weight matrix. (c) Its distance matrix

Department of ISE = BMS Institute of Technology and Mgmt

210

&

(R
o
e
e
4
ok
&3
[l

6 16 9 |0

VMW O O
alon®

mnONMNO
L

w|(8|8 ~O v i8]0 B |~ Bv|e®©~

viml|g o 8 vmwloe olmwlojle] vmwo

Qlslo~ § altlol~ 3| to|nlg a8 o0~

NO|N § ©| a O|N|E © O NO|O sOoOND
L] L i R B | N

mQ OB mQ 0D ®Q LV ma o

I 0 [

=] ¥]

Q Q Q

R

6O 0w

I
g
Q

On the k-th iteration, the algorithm determines shortest paths
between every pair of vertices I, J that use only vertices among
1,...,k as intermediate

D®[i,j] = min {D&[i,j], D&Y[i,k] + D®&D[k,j]1}

RN DK,

DKL j] -t~ .

Department of ISE | BMS Institute of Technology and Mgmt 212

ISE Dept.

Transform Here

ALGORITHM Floyd(W|[1..n, 1..n])

/[Implements Floyd’s algorithm for the all-pairs shortest-paths problem
/Input: The weight matrix W of a graph with no negative-length cycle
//Output: The distance matrix of the shortest paths’ lengths
D < W //is not necessary if W can be overwritten
fork < 1tondo
fori < 1tondo
for j < 1tondo
D[i, j] < min{D[i, j], D[i, k] + D[k, j]}

return D

Time efficiency: O(n3)

Note: Works on graphs with negative edges but without negative
cycles.

Department of ISE | BMS Institute of Technology and Mgmt 213

ISE Dept.

Transform Here

Optimal Binary Search Tree

Binary Tree

=
P @

® ® &

All elementsin the left subtree of root are less than root and all elementsin the right
subtree of root are greater than root.

Department of ISE | BMS Institute of Technology and Mgmt 214

ISE Dept.

Transform Here

BST is constructed from the elements 10, 20 and 30.

10 as root node 20 as root node 30 as root node

o =
B (20) (o)
= @ @ O
P ®
@ @ tbt;tacl: (r;unrr;]l:))/e(:] Sfl |)38TS with n nodes is given 0

Department of ISE | BMS Institute of Technology and Mgmt 215

ISE Dept.

Transform Here

0“"6 AL o

wevy Cost of searching any Key

* Costof searching any key is dependent on comparisons required for searching any key
elementinthe tree.

Key ¢ Key C Key C Key C Key C
10 1 10 1 10 2 10 3 10 2
20 2 20 3 20 1 20 2 20 3
30 3 30 2 30 2 30 1 30 1
Avg | 6/3=2 Avg | 6/3=2 Avg | 5/3=1.66 Avg | 6/3=2 Avg | 6/3=2

* Thirdtreeis balanced tree because,
* Average of comparison is less
* Heightis less

Department of ISE | BMS Institute of Technology and Mgmt 216

HN.
& {ECHNO, 6y
<
®

ISE Dept.

Transform Here

Cost of BST-Frequencies

Keys 10 20 30
Frequencies) 6
for Searching

3*2:6 §*2:12 2'3=6

M
Total Costis =18

Total Costis = 25 TO“CO“N:?" Total Costis =20 Total Cost is = 19

* Minimum searching costis low meansit’s a Optimal BST

* Tree 5is having minimum searchingcost= 18

* TreeS5is OBST.

* Though itis not height balanced, tree 5 is OBST which is based on frequencies the
cost of BST is minimum.

« Key Point to Remember: “Highest frequency key must be root node and lowest

frequency key must be a child (Leaf) node.” 17

ISE Dept.

Optimal Binary Search Tree \

Problem: Given n keys a, < ...< a, and probabilities p,, ..., p,,
searching for them, find a BST with a minimum
average number of comparisons in successful search.

Since total number of BSTs with n nodes is given by C(2n,n)/(n+1),
which grows exponentially, brute force is not recommended.

« BST is a tree which is mainly constructed for
searching a key from it.

* For searching any key from a given BST, it should
take optimal time.

* For this, we need to constructa BST in such a way
that it should take optimal time to search any of
the key from given BST.

* To construct OBST, frequency of searching of
every key is required.

Department of ISE | BMS Institute of Technology and Mgmt 218

ISE Dept.

Transform Here

Example: What is an optimal BST for keys A, B, C, and D with
search probabilities 0.1, 0.2, 0.4, and 0.3, respectively?

0 Average # of comparisons

= 1%0.4 + 2%(0.2+0.3) + 3*0.1
ONNO =17

0.1*1+02*2+04*3+03%4=209,

Department of ISE | BMS Institute of Technology and Mgmt

219

"4 Pbtain the optimal binary search tree for

following

(do, if, int, while) with the following
probability(0.1,0.2,0.4,0.3)

) 9 3

L ®
0-3
. §=>_ Cost takle

B L5 3 Y Root fable

‘ Lo_.;‘_#_g meE
S CA w
3 ooy | LE\L

b 0 o

-

3
04

]
s | H 220

logy and Mgmt

o \E‘?“"Olo‘.'

ISE Dept.

Transform Here

L7

-
) Wearuns® odl ‘

ISE Dept.

Transform Here

_ v
R (A
) Wearuns® odl ‘

Department of ISE BMS Institute of Technology and Mgmt

ISE Dept.

Transform Here

Department of ISE BMS Institute of Technology and Mgmt

————t
wmu-Z,C[z1]+qa,Q+m,m]*

Plq) ISE Dept.
0+10+02+04+03 Tosesforn Here
= 19
Cl2, 4] =|Whenk=3 _ CJ[2, 2] + C[4, 4] + P[2] + P[3) + Pl4)

02 + 03 + 0.2 + 0.4 + 0.3
= 14 — Minimum value
. consider k = 3
SR - CI2,3] + CI5, 41+ P[2] + P[3] + P[4]
08 +0+ 02+ 04 + 0.3
= 1.7

Cl2,4] = 14
R[2,4] = 3

226

ISE Dept.

Transform Here

2N R
o

i,
) WeaLuns > odl ’

s »
‘f-j’“ .: < iy -
‘ = 21

e

3 ClL, 2] +Cl4,4] + ? "
04 +03+01+02+0. 0
= 17 - Minimum value
-, consider k
Nhenk=4 _ Cl1,3] +CI5, 4] + P[1]+ P[2]

13+0+01+02+04+03
= 23

11

08

14

10

3 (e
2
AEIE

! 3 {

@ —= Key = 3 means "int"

@ —= Gives key = 4 means "while"

R[1.4]
=3

Herek =3

ISE Dept.

T ansform Hene

ALGORITHM OprimalBST(P|1..n])
//Finds an optimal binary search tree by dvnamic programming
/Input: An array P|1l..n|of search probabilities for a sorted list of n keys

//Output: Average number of comparisons in successful searches in the
// optimal BST and table R of subtrees’ roots in the optimal BST

for/ « | ton do

e T
Cliyi=23 30 i 0Ot fable
L 3

Cli.i] « Pli] I Y Root fable
Rli.i] «i | |0 {0} i o gk
Cln+1.n] <0 9 |0t ‘[
ford < 1ton — 1do //diagonal count " 0 o«,k
fori < lton —ddo N o0 *
J—i+d 5 . :
minval « oc | 4 2

fork « 1/ to j do
ifCli. k = 1]+ Clk + 1. j| < minval
minval < Cli, k = 1|4+ Clk+ 1, j} kmin <k
Rli, j| < kmin
sum <« Plif: fors « i+ 1to j do sum « sum + P|s|
Cli. j]| < minval + sum
return C[1, n|. R

Department of ISE | BMS Institute of Technology and Mgmt 229

Given n objects of known weights wil,w2...wn and
profit pl, p2, ... pn for those n objects and a knapsack
of capacity M i.e is not exceeding the weight M. Let a
variable xi be ‘O’ if we do not select the object ‘i’ or ‘1’
if we include the object ‘i’ into the knapsack.

The objective Is to maximize the total profit
earned. Since the knapsack capacity is M, we

require the total weight of all chosen objects to
be at most M.

BMS Institute of Technology and Mgmt

230

Maximize) <;<y, PiXi

Subject to)1 <<, WIXi < m

The profits and weights are positive numbers.

Department of ISE = BMS Institute of Technology and Mgmt 231

E—
Item Weight Value

1 2 3

2 3 4

3 4 5

4 ; 0

The capacity of knapsack is W=5

Department of ISE = BMS Institute of Technology and Mgmt

ey For the given instances of problem obtain th
optimal solution for the knapsack problem

232

CHN
of 1E Olo‘.'

<

Department of ISE BMS Institute of Technology and Mgmt

"‘1*’1 A

g‘é,ﬁ | *" =2and v, =

i table [1, 1] as
“ - ﬂlal-),.
gl il
= tblefo,1]

Mmhﬂ., =2 w;=2and v, =3
‘ 2w, we will obtain table [1, 2] as
le [1,2] = maximum {tablei-1, jl. v i +table[i-1, j- w
2 = maximum {(table[0, 2]),(3+ table[0, 0])}

:'.’r‘miej,jg3 w;=2and v, =3
“““ﬂ.ﬂa
Sl = maximum {table[i-1,j], v, +table[i-1,j-]}
= maximum {table [0, 3], 3+ table [0, 1]}

-‘lt TN,
x mus*q

[
[
~
—
I
1SN

maximum { table [-
maximum { table [0,

maximum {0, 3 + 0}

1’ j]l L +tab1e[1—1,]—w :]}
1
4], 3+ table[o, 21}

table

[11 4] =3

table [1, 5] With i
Asj = W ; we will
table [1, 5] =

=11j=5:Wi=2andvi=3

obtain table [1, 5] as

maximum {table[i—1,j], v; +table[i—1,j— w; 1}

maximum {table [0, 5] , 3 + table [0, 3]}

maximum {0, 3 + 0}

table

[1,5] =3

The table with these values can be

0o

p WO N =B O

235

L RR———————

NWHmﬁnupnextrowof&\etable.
hbk[’.l]Wi&\hZ,j:l,wi=3andvi=4

AS | <, we will obtain tabl 1]
uble l2, l] = table [l - 1,]]
= tale [, 4

able 3,1 = s [5

table [2,2) Withi=2,j=2 w;=3and v; =4
Asj<wi,wewil]obtaintable[2,2]as

table 2, 2] = table [i- 1]
= table {1, 2 e

/ A

Department of ISE | BMS Institute of Technology and Mgmt 236

hblefZ.S]Wiﬁ\i=2.j=3,wi =3 and v,

As j = W i. We will obtain table [2, 3] as
table [2, 3] = maximum {table[i—-1,j], v, +tab1e[i_],,'_“-l]}

maximum {table [1, 3]. 4 + table [1. o}

= 4

= maximum {3, 4 + 0}

table[2,3]=4
=4, w; =3 and v; =4

table [2, 4] With i = -
As j = w;, we will obtain table [2, 4] as

table [2, 4] = maximum {table[i—1,j], v; + table[i—1,j—w;]}
maximum {table [1, 4], 4 + table 15 1D

= maximum ({3, 4 + 0}

table [2, 4] = 4
S5, w; =3and v; =4

table [2, 5] With i = 2, j =
As j = w ;, we will obtain table [2, 5] as

table [2, 5] = maximum {table[i—1,j], v +table[i—1,j— w; [}
= maximum {table [1, 5], 4 + table [1, 2]}

maximum {3, 4 + 3}

table [2, 5] = 7

The table with these computed values will be

o 1 2 3 + S
o e o o) . o
1 o o 3 3 3 -
> o - = 2 ey 7
> £ 4 237
« fun -

Zynamic Frog

table [3, U With1 =3, j =1, w, =4 ana v, - 5
Asj < wa. e willEh e L ISE Dept.
table [3, 1] = table [i — 1, il

= table [2, 1]

table [3, 1] = O 0 1 2 3 4]

Transform Here

table 3, 21 With i = 3, j =2, Wi =4 and vy =25 [r——
Asj < Wi, we will obtain table [3, 2] as
table [3, 2] = table [i — 1, j] 0 0 0 0 0 0 0
= table [2, 2] 1
table [3, 2] = 3 KN 21 3
table [3, 3] Witl"li=3,j=3,\,\;i =4dand v; =5 2 ' 0 0
As j < w i, we will obtain table [3, 3] as 3 4 4 7
table [3, 3] = table [i — 1, jl i
= table [2, 3] 3 }0 013 4517
table [3, 3] = 4 4 0 7

table [3, 4] With i =3, j=4, w; =4 and v; =5
As j= w ;, we will obtain table [3, 4] as

table [3, 4] = maximum {table[i—1,j], v +table[i—-1,j—w;]}
maximum {table [2, 4], 5 + table [2, O] }

= maximum (4, 5 + 0}

table [3, 4] = 5

table [3, 5] With i = 3, j =5, w,; =4 and v, =35

As = w |, we will obtain table [3, 5] as ’
table [3, 5] = maximum {table[i-1.j]. v+ table[i—1, - w {1}
- maximum {table [2, 5], 5 + table [2, 11 }

= maximum {7, 5 + 0}

238

[ub; [3, 5] =7

table [4, 1] Withi=4,j=1, w, =5, v, = 6

As j < w;, we will obtain table [4, 1] as
table [4, 1] = table [i — 1, j]
table [3, 1]

table [4, 1] = O

table [4, 2] Withi=4,j=2, wi=5and v; =6
As j < w;, we will obtain table [4, 2] as
table [4, 2] = table [1i—1, jl
= fable 13 2]

table [4, 2] = 3

table [4, 3] Withi=4,j=3, Wy =3 and vi = .6
Asj < w i we will obtain table [4, 3] as
table [4, 3] = table [i — 1, jl
= table [3, 3]

table [4, 3] = 4

table [4,4]withi=4,j=4,wi = 9. and Srev = &
Asj < w i- we will obtain table [4, 4] as
table [4, 4] = table [i — 1, j]
= table [3, 4] 239

table [4, 4] = 5 ,

. vynamic

ISE Dept.

Transform Here

hbl¢[4,5]Withi=4,j=5 Wi=5andv. = ¢
’ B y =
Asj2w. |

i» We will obtain tahje [4, 5] as

tabl = i
elf4,5] = Mmaximum {table[i—l,j],vi+tab19[i-1,]"wx]}

= Mmaximum {table [3, 5], 6 + table 3, 0]}
= maximum {7, 6 + 0}
table [4, 5] = 7

Thus the table can be finally as given below

3 : . p . P . This is the total
5 {» value of selected

items

Department of ISE | BMS Institute of Technology and Mgmt 240

—table [i,k) £ twle [i-1, K]

|

Scltd h {Tem ynTo bO—aIQaqc

(4 L}

B L-b. ond k= K-Rg

TE

Department of ISE | BMS Institute of Technology and Mgmt 241

ISE Dept.

Transform Here

olole|®o|e"
aln|p|w|o]|®

mmbwcb
N[(v|N|w|o|@w

wlwlw|w|O|N

a‘o‘cvooo

Start from here

o

-

A W N

elolol|e]|?]®
o)

w|lw|w|w]|o|N
W

an|lo|d|® o\ld

o o |e
I IFSE PN

~ahle [i,K] F Tl rER

Sleat (I iTem nTo boajgaqc
i.e., table [4, 5] = table [3, 5] ’ '
~.do not select i" ie., 4™ jtem.

1z 1-] ond KeK-K{

4

Now set

i=1i-1 y .
= 3
Capacity —

items o 1 2 2 .
v o o o o o o
1 0 0 3 3 3
2 (6] 8] 3 < 4
3 o} o] =< 4 5

4 0 o) 3 a4 5 7

As table [i, k] = table [i — 1, k]

Ll-.hbh[S,S]-ubh[z'SI

—

242

do not select jth item i.e., 3" ijtem. ISE Dept
& ept.
Now set i = =S 2 ?'m:r.\jfr!E”l-’m
(0] 1 2 8
o o o o
1 (0] (o] 3\\\3
v 2 o (o] 3 4
3 o (0] 3 4
4 (0] (6] 3 4

As table [i, k] = table [i — 1, k]

i.e. table [2, 5] = table [1, 5] i :
1,K oble | 1-1,K
select it item. [) -) :F— 1 [1]

That is, select 279 jtem. Sl et b jTem inTo bo-a’ Catk

4
-

- 1-1 ond k= K-K;
land k=5-3 =2

,..
o
~
Il

' |

1
) 0 0 0
i,)) 3 3 3
e 0 0 4 4 7
3 0 0 3 4 5 i
4 0) 3 4 5 7

As table [i, k] = table [i — 1, k]
Le. table [1, 2] = table [0, 2]
select ith jtem.

That is select 15t item.
Seti=i_1andk=k-w;
‘*i=0andk=2-2=0

Thus we have selected item 1 and item 2 for the knapsack. This solution can also be

"Presenteq by solution vector (1, 1, 0, 0).

~—

243

ISE Dept.
Transform Here

Knapsack Problem by DP (pseudocode)

Algorithm DPKnapsack(int: w[1..n], int: p[1..n], M)
int: V[0..n,0..M]
forj:=0to M do
V[0,j] :=0
fori:=0tondo
V[i,0] :=0
fori:=1tondo
forj:=1toMdo
if wli]l<jand pli] + V[i-1,j-wl[i]] > V[i-1,j] then
VIij] := pli] + V0i-1,j-wlil];
else
VIij] := VIi-1,j1;
return V[n,M]

Running time and space: O(nW).

Analysis

The classic dynamic programming approach, works
bottom up: it fills a table with solutions to all smaller
subproblems, each of them is solved only once.

Drawback: Some unnecessary subproblems are also
solved

The time efficiency and space efficiency of this
algorithm are both in @(nW).

The time needed to find the composition of an
optimal solution is in O(n).

Department of ISE | BMS Institute of Technology and Mgmt 245

| =5, w 1 =5and v i =6
Asj2w,, we wil obtain table [4 5] as
table [4, 5] =

maximum {table [i-1,j], y . +table[i-1,j- w]}
= Maximum {table [3, 5] , 6 + table [3, 0])
= maximum (7, 6 + 0}

table [4, 5] = 7

Thus the table can be finally as given below

; 5 0 3 4 5 - This is the total
|y value of selected
items

Department of ISE | BMS Institute of Technology and Mgmt 246

Discussion

* The direct top-down approach to finding a solution to
such a recurrence leads to an algorithm that solves
common subproblems more than once and hence is very
inefficient.

* Since this drawback is not present in the top-down
approach, it is natural to try to combine the strengths of
the top-down and bottom-up approaches.

* The goalis to get a method that solves only subproblems
that are necessary and does so only once. Such a method
exists; it is based on using memory functions.

Department of ISE | BMS Institute of Technology and Mgmt 247

Algorithm MFKnapsack(i, j)

Implements the memory function method for the
knapsack problem

Input: A nonnegative integer i indicating the number of the
first items being considered and a nonnegative integer j
indicating the knapsack capacity

Output: The value of an optimal feasible subset of the first i
items

Note: Uses as global variables input arrays Weights[1..n], V
alues[1..n], and table F[0..n, 0..W] whose entries are
initialized with —1’s except for row 0 and column 0 initialized

. !
with 0’s
Department of ISE | BMS Institute of Technology and Mgmt 248

Memory Function Knapsack

Example: Knapsack of capacity M =5
item weight value

1 2 S8
2 1 S6
3 3 S16
4 2 S11 capacity j
O 1 2 3 4 5
0/0 0 0 0 0 O
wi=2 peg 1|0 T 1L
w,=1, po6 2|0 -1 -1 -1 -1 -1
w,=3, pe16 3|0 1 111
w,=2, p=11 4|0 -1 -1 -1 -1 -1;

P49

Memory Function Knapsack

o g RS PR 54
v [i,5) =Conon§miklia,)], pri) & mykLic) Wwil] NS

. v §-9i0
H,),}’(\'\)J] 'y

i=4, j=5, p[i]=11, wi =2

J-wi =5-2 =3 (able to fit into knapsack)

Find V[4,5] = max{ mfk][i-1,j], p[i] + mfk[i-1, j-wi]}
= max{ mkf(3,5), 11+mfk(3,3)}

= max{ --------- , 11+ -——----)}
Find V[3,5] = max{ mkf(2,5), 16+mfk(2,2)}
= max{ -------- N R }

Department of ISE = BMS Institute of Technology and Mgmt 250

Memory Function Knapsack

Find V[3,3] = max{ mfk[i-1,j], p[i] + mfk[i-1, j-wi]}
= max{ mkf(2,3), 16+mfk(2,0)}
= max{ ----, 16+ -----)}

Department of ISE = BMS Institute of Technology and Mgmt 251

Find V[1,5] = max{ mkf(0,5), 8+mfk(0,3)}
=max{ 0, 8+0}=8

Find V[1,4] = max{ mkf(0,4), 8+mfk(0,2)}
=max{ 0, 8+0}=8

Find V[1,2] = max{ mkf(0,2), 8+mfk(0,0)}
=max{ 0, 8+0}=8

Find V[1,3] = max{ mkf(0,3), 8+mfk(0,0)}
=max{ 0, 8+0}=8

Find V[1,1] = max{ mkf(0,1)} =0

Back
Substitute
- these
values

—

Department of ISE = BMS Institute of Technology and Mgmt 252

ik V[2,3] = max{ mkf(1,3), 6+mfk(1,2)}
== - max{8, 6+8} =14
Find V[1,5] = max{ mkf(0,5), 8+mfk(0,3)}
=max{ 0, 8+0}=8
Find V[1,4] = max{ mkf(0,4), 8+mfk(0,2)}
=max{ 0, 8+0}=8
Find V[1,2] = max{ mkf(0,2), 8+mfk(0,0)}
=max{ 0, 8+0}=8
Find V[1,3] = max{ mkf(0,3), 8+mfk(0,0)}
=max{ 0, 8+0}=8
Find V[1,1] = max{ mkf(0,1)} =0

Back
Substitute
- these
values

—

Department of ISE = BMS Institute of Technology and Mgmt 253

Memory Function Knapsack

Find V[3,3] = max{ mfk[i-1,j], p[i] + mfk[i-1, j-wi]}
= max{ mkf(2,3), 11+mfk(2,0)}
=max{ 14, 16+ 0)} = 16

Find V[2,5] = max{ mkf(1,5), 6+mfk(1,4)}
= max{ 8§, 6+ 8} =14

Find V[2,2] = max{ mkf(1,2), 6+mfk(1,1)}
=max{8, 6+0}=8

Department of ISE = BMS Institute of Technology and Mgmt 254

Memory Function Knapsack

VI[i,jl = max{ mfk[i-1,j], p[i] + mfk[i-1, j-wi]}

i=4, j=5, p[i]=11, wi =2

J-wi =5-2 =3 (able to fit into knapsack)

Find V[4,5] = max{ mfk[i-1,j], p[i] + mfk][i-1, j-wi]}
= max{ mkf(3,5), 11+mfk(3,3)}
=max{ 24, 11+ 16)} =27

Find V[3,5] = max{ mkf(2,5), 164+mfk(2,2)}

= max{ 14, 16+ 8} =24
265

Memory Function Knapsack

Example: Knapsack of capacity M =5

item weight

value

1

2
3
4

w,=2, p=8 1
w,=1, p,=6 2

wy=3, p,=16 3
w,=2, p=11 4

2

1
3
2

capacity J

3 4 5
0 0 0
1 -1 -1
1 -1 -1
1 -1 -1
1 -1 -1

0 0 0 O
8 8 8 8
8 14 -1 14
116 -1 24
1 -1 -1 27

ISE Dept.
Transform Here

emory Function Knapsack Algo.

ALGORITHM MFKnapsack(i, j) //Implements the memory function method for
the knapsack problem //Input: A nonnegative integer i indicating the number
of the first // items being considered and a nonnegative integer j indicating //
the knapsack capacity //Output: The value of an optimal feasible subset of the
first i items //Note: Uses as global variables input arrays Weights[1..n],
Values[1..n], //and table V[0..n, 0. W]whose entries are initialized with -1’s
except for //row 0 and column 0 initialized with 0’s

if V[i, jl< 0
if j<Weights[i] = value¢-MFKnapsack(i-1,j)
else valueé&max{MFKnapsack(i-1, j),
values[i][+MFKnapsack(i -1, j-Weights[i])}
V[i, jl¢value
return VJi,

Department of ISE = BMS Institute of Technology and Mgmt 257

MODULE -5

BACKTRACKING

introduction to The Design &
Analysis of Algorithms
o comon [kt Al

Department of ISE = BMS Institute of Technology and Mgmt 258

.év" l.% s

¢

70 =
“ 2k

~
===t
=t
=
y

Backtrack’ the Word was first introduced by Dr. D.H. Lehmer in
1950s.

e R.J Walker Was the First man who gave algorithmic description
in 1960.

e Later developed by S. Golamb and L. Baumert.

-3 Backtracking ISE Dept.

Backtracking technique resembles a depth-first — search
in a directed graph. The graph concerned here is usually
a tree, the aim of backtracking is to search the state
space tree systematically. The aim of the search is to find
solutions to some problems.

BMS Institute of Technology and Mgmt

259

What is Backtracking?

When the search begins, solution to the problem is unknown.
Each move along an edge of the tree corresponds to adding a
new element to a partial solution, that is to narrowing down the
remaining possibilities for a complex solution.

The search is successful if, a solution can be completely
defined. At this stage an algorithm may terminate or it may
continue for an alternative solution.

The search 1s unsuccessful if at some stage the partial solution
constructed so far cannot be completed. In this case the search
backtracks like a depth first search, removing elements that
were added at each stage.

BMS Institute of Technology and Mgmt 260

State Space Tree

In state space tree, root represents an initial state before the
search for a solution begins. The nodes of the first level in the
tree represent the choice made for the first component of a
solution, the nodes of the second level represent the choices for
the second components, and so on. A node In a state space tree
IS saild to be promising If it corresponds to a partially
constructed solution that may lead to a complete solution;
otherwise a node is said to be non promising.

Department of ISE = BMS Institute of Technology and Mgmt 261

Apphcat lon of Backtracking

* Optimization and tactical problems
* Constraints Satisfaction Problem
* Electrical Engineering
* Robotics
* Atrtificial Intelligence
* Genetic and bioinformatics Algorithm
* Materials Engineering
* Network Communication
* Solving puzzles and path

Department of ISE | BMS Institute of Technology and Mgmt

262

.+ N-Queen Problem
Y
.

History:

First Introduced in 1848 which was known as 8- queens Puzzle. Surprisingly,

The First Solution was created in 1950 by Franz Nauck. Nauck made an 8X8
Chessboard to find the first Feasible Solution

R
S

s

Department of ISE | BMS Institute of Technology and Mgmt 263

N Queen Problem

Problem Description

In a NxN square board N —number of queens need fo be
placed considering three Condition ---

* No two Queens can be placed in same row.
* No two Queens Can be places in same Column
* No two queens Can be placed in same Diagonal.

Department of ISE | BMS Institute of Technology and Mgmt 264

Constraints

Explicit Constraints: All ‘'n” queens must be placed on the
chessboard in the columns 1,2,3, N. Xi belongs to S where S =
{1,2,3, ... N}

Implicit Constraints: In this all Xi Values must be distinct
No two queens can be on the same row

No two queens can be on the same column

No two queens can be on the same diagonal

Department of ISE = BMS Institute of Technology and Mgmt 265

Horizontal Attack:

Row wise attacking is avoided by placing 15t queen in
15t row, 2" queen in 2" row and so on.

By placing ith queen in ith row, horizontal attacking can
be avoided

C .
Q2

Department of ISE | BMS Institute of Technology and Mgmt 266

..} Vertical Attack:

(i, x[i])=> means the position of ith queen in row i and
column x]i]

(k, x[k])=> means the position of kth queen in row k
and column x[k]

If ith & kth queen are in same column then
X[i] == x[k] --------------- (1)
Hence indicate that queens attack vertically

--- (1,1) & (4,1) x[i] == x[k] to be avoided

Q4

Department of ISE | BMS Institute of Technology and Mgmt 267

Diagonal Attack:

Top left corner to bottom right corner: The difference
between row value and column value is same.
111213 (1,3) & (2,4) [|i-x[i]| = |k-x[k]|---—---- (2) to be
mEE
3,1 3,2 3,3 34

41 42 43 44

Department of ISE | BMS Institute of Technology and Mgmt 268

Diagonal Attack:

Top right corner to bottom left corner: The difference
between row value and column value is same.

mm (1,3) &(3,1) i+x[i] =k+x[k] ------ (3) to be

21 22 23 24 avoided

- 32 33 34 Using eqn. (2) and (3)
i—k = X[i] 'X[k] ----------------- (4)
i—k = - X[i] + X[K] --rorooeeeeees (5)

41 42 43 44

li—k| = |x[i] - x[k]| indicates queens attack diagonally.

X[i] == x[k] | | abs(i —k) = abs(x[i] — x[k]) = two queens
attack each other and cannot be placed.

Department of ISE | BMS Institute of Technology and Mgmt 269

2} Algorithm
(e adf
Backtracking approach for solution

Algorithm Nqueen(K,n){
Fori=1ton{ Place(k,i){
If Place(K,i{ For j=1 to k-1{
X[k] =1; If((x[j] = i) or abs(x[j] - 1 = abs(j-k)))
If(k = n) then Return false;
Write x[1:n]; }
Else Return true;
Nqueen(k+1, n) ; }
}
}
}

The Algorithm will check each position [i, j] for each queens . If any Suitable places found , It will
place a queen on that position. If not Algorithm will try same approach for next position.

Department of ISE | BMS Institute of Technology and Mgmt 270

T e ==
et

Department of ISE | BMS Institute of Technology and Mgmt 271

Queen-1 1 Q

Queen-2 2 Q

Queen-3 3 Q g

Queen-4 4 Q

Department of ISE | BMS Institute of Technology and Mgmt

Queen-1

Queen-2

Queen-3

Queen-4

272

&

235

":...; i ryﬂ
— -

Hamiltonian Cycle

Hamiltonian Path in an undirected graph is a path that visits each vertex exactly
once. A Hamiltonian cycle (or Hamiltonian circuit) is a Hamiltonian Path such that
there is an edge (in graph) from the last vertex to the first vertex of the
Hamiltonian Path. Determine whether a given graph contains Hamiltonian Cycle
or not. If it contains, then print the path. Following are the input and output of
the required function.

Input:
A 2D array graph[V][V] where V is the number of vertices in graph and
graph[V][V] is adjacency matrix representation of the graph. A value graphlil[j] is
1 if there is a direct edge from i to j, otherwise graphli][j] is O.

Output:
An array path[V] that should contain the Hamiltonian Path. path[i] should
represent the ith vertex in the Hamiltonian Path. The code should also return
false if there is no Hamiltonian Cycle in the graph.

BMS Institute of Technology and Mgmt 273

http://en.wikipedia.org/wiki/Hamiltonian_path
http://en.wikipedia.org/wiki/Hamiltonian_path
http://en.wikipedia.org/wiki/Hamiltonian_path

nle 2

Hamiltonian Cycle is a graph theory problem where the graph cycle
through a graph can visit each node only once. The puzzle was first

devised by Sir William Rowan Hamilton %nd the Problem is named after
- B

Him.

Condition: The Cycle Started with a Starting Node, and visit all the Nodes in the Graph

(Not necessary to visit in sequential Order and not creating edge that is not given) And
Stop at The Startina Point/Node.

Department of ISE | BMS Institute of Technology and Mgmt 274

The Backtracking Approach

The Algorithm First Check the Starting Node, if there is any edge to the next node. If
yes, then the Algorithm will check that node for the edge to the next Node. It will Also
Check If any Node is visited twice by the previous Node. If there is any then the
Algorithm Will Ignore One and Choose the Optimal One for the Solution.

B G

F E

The Important thing is the tour must finish at the starting point.

Department of ISE | BMS Institute of Technology and Mgmt 275

S
o =,
“WeaLuns-*

w
For example consider the given graph 0
and evaluate the mechanism:- (o)
1.
(o)—(b)_ 2 e () S
T R ()
A 35) . 6
(e —) */ (22
= : al 7. .8
‘o) (d) (r)
ST dead-end dead-end
(0
dead-end
(a)
(b)

Figure: °* (a) Graph.

* (b) State-space tree for finding a Hamiltonian circuit. The

ISE Dept.

Transforn Here

(d)

o

solution

numbers above the nodes of the tree indicate the order the order

in which nodes are generated.

Department of ISE | BMS Institute of Technology and Mgmt

276

Solution Solution

Department of ISE | BMS Institute of Technology and Mgmt 277

Algorithm Hamilton_Cycle(k){

Repeat{ AlgortihmNextVal(k){
NextVal(k); Repeat{
If(x[k]==0) then X[k] = (x[k]*1) mod (n+1);
Return; If(x[k]=0) then return;
If (k ==n) then If (G[x[k-1],x[k]] != 0) then{
Write (x[1:n]); Forj=1to k-1 do
Else If(x[j]=x[k]) then
Hamilton_Cycle(k+1); Break;
} If(j = k) then
Until (false); If (k<n or k=n) && G[x[n],x[1]] !=0)
} Then return;
}
}
Until (false);
}

Department of ISE = BMS Institute of Technology and Mgmt 278

ISE Dept

for (inti=1;i<=n;i++)

X[i]=0

X[1] =

void HamiltonianMethod(int k) {

while (true) {
NextValue(k, G, x, n);

if (x[k] == 0)
return;
if (k ==n) {

for (inti=1;i<=k; i++)
System.out.print(x[i] + " ");
System.out.printin(x[1]);
System.out.printin();
found = true;

return;

} else
HamiltonianMethod(k + 1);

Solution

Department of ISE | BMS Institute of Technology and Mgmt 279

void NextValue(int k, int G[][], int x[], int n) {
while (true) {
X[k] = (x[k] + 1) % (n + 1);

if (x[k] == 0)

return;

if (G[x[k - 1]][x[k]] != 0) {
intj;

for(j=1;j<k;j++)

if (x[k] == x[j])

break;

if (j == k)

if (k< n) || ((k==n) && G[x[n]][x[1]] != 0))
return;

}

}

}

ISE Dept.
Trangforn: Here

Hamiltonian Cycle
Enter the number of the vertices: 4

If edge between the following vertices
enter 1 else O:

1and 2:1

1and3:1

1and4:1

2 and 3:

1

2and 4:0

3and4:1

Solution:
12341

14321

Department of ISE | BMS Institute of Technology and Mgmt 280

ISE Dept.

Y Trangforn Here

e, L5

G
I “Ugaune [

Solution Solution

Department of ISE | BMS Institute of Technology and Mgmt 281

ISE Dept.

'F'rrm.\.fmlfl Here

BMS Institute of Technology and Mgmt 282

Sum of subsets

* Subset-sum Problem: The problem is to find a subset of a given set
$ = {s, sy~ == s,}of ‘n’ positive integers
whose sum is equal to a given positive integer

ld’.

* Observation : It is convenient to sort the set’s elements in
increasing order, S, £ 5,< £§, And each
set of solutions don't need to be necessarily of
fixed size.

* Example : For S ={3, 5, 6, 7} and d = 15, the solution is
shown below :-

Solution = {3, 5, 7}

Department of ISE | BMS Institute of Technology and Mgmt 283

J

%

. Sum of subsets

o0 =,

The Sum of Subset Problem is, there will be a set of distinct positive
Numbers X and a given Number N. Now, we have to find all the
combination of numbers from X that sum up to N. Make a Set of
those Number.

LN

W={45,6,3)}
M=13

Department of ISE | BMS Institute of Technology and Mgmt 284

Find a subset of a given set S={S1, S2, S3, S4, ------ Sn}
Of n +ve integers whose sum is equal to given +ve integer d subject
to the constrains

1. Implicit: All Xi values should be distinct and should belong to
the set S
2. Explicit: optimal solution be ¥, Si = d

Xi of the solution vector is either 1 or 0 depending on weather the
weight Wi is included or not.

Department of ISE = BMS Institute of Technology and Mgmt 285

For a node at level i, the left child corresponds to Xi=1
and the right child to Xi=0

The bounding function X[X1, X2, X3, ----- Xn] = true iff
KWIEXi+ YR Wi > d

X1, X2, ----- Xk cannot lead to an promising node if this
condition is not satisfied.

Department of ISE | BMS Institute of Technology and Mgmt 286

The bounding function can be strengthened if we
assume that Wi’s are initially in increasing order.

In this case X1 — Xk can not lead to promising node if
X[X1, X2, X3, ----- Xn] = true iff
K
wi Xi+w, , d
+ 1 <

=1

X1, X2, ---—-- Xk cannot lead to an promising node if this
condition is not satisfied.

Department of ISE = BMS Institute of Technology and Mgmt

287

Therefore the bounding function will be
K Wi Xi+Yr, Wi >d

K
andeiXi+Wk . d
+ 1 <

1=1

Department of ISE | BMS Institute of Technology and Mgmt 288

State space tree

X3=1

Solution

Department of ISE | BMS Institute of Technology and Mgmt 289

ISE Dept.

Transforn Here

Wq'3 3 0
w, = 4 4 0 4 0

X
wy=5 5 0 5 0 5 0

x x x x
~ o 0

Department of ISE | BMS Institute of Technology and Mgmt 290

w.-G

2=f Sum of subsets
Backtracking Approach

First, organize the numbers in non decreasing order. Then generating a tree, we
can find the solution by adding the weight of the nodes. Note that, here more than
necessary nodes can be generated. The algorithm will search for the weighted amount
of the nodes. If it goes beyond given Number N, then it stops generating nodes and

move to other parent nodes for finding solution.

Algorithm SumOfSubset(s,k,y){
X[k] =1;
If(s+w[k] = m)
Write (x[1:n]);
Else if((stw[k] + w[k+1]) <= m)
SumOfSubset(s+w[k], k+1, y-w[k]);
If ((s+ y-w[k]>=m) &&(s =w[k+1] <=m)) {
X[k] =0;
SumOfSubset(s, k+1,y-w[k]);
}
}

Department of ISE | BMS Institute of Technology and Mgmt 291

ISE Dept.

Transforn Here

P '
.- 3 > > ™S
o —
‘ “WeaLuns-* ’

wih 3 wio 3

3 0
withh 5 wobS with 5 wo5
. L") & 0 0

whe wio 6 wh 6 w/ob M’:ds
g 0 Q O 0 ﬁ
1407)15 with 7 9.7;15 307(15 1107>15 507(15
; (=] 0
solution 8<15

Figure : Compete state-space tree of the backtracking algorithm applied to the instance § =
{3,5,6,7) and d = 15 of the subset-sum problem. The number inside a node is the
sum of the elements already included in subsets represented by the node. The
inequality below a leaf indicates the reason for its termination.

Department of ISE | BMS Institute of Technology and Mgmt 292

for (inti=1;i<=n;i++)
sum = sum + S[i];
if sum<d [] S[1] > d)

System.out.printin("No Subset possible”);

else
SumofSub(0, 0, sum);

Department of ISE | BMS Institute of Technology and Mgmt

293

static void SumofSub(int i, int weight, int total) {
if (promising(i, weight, total) == true)

if (weight==d) {

for(intj=1;j<=i; j++){

if (soln[j] == 1)

System.out.print(S[j] + " ");

}

System.out.printin();

} else {

solnfi+ 1] = 1;

SumofSub(i + 1, weight + S[i + 1], total - S[i + 1]);
soln[i+ 1] = 0;

SumofSub(i + 1, weight, total - S[i + 1]);

}

} Department of ISE = BMS Institute of Technology and Mgmt

294

static boolean promising(int i, int weight, int
total) {

return ((weight + total >= d) && (weight ==d ||
weight + S[i + 1] <=d));

Department of ISE = BMS Institute of Technology and Mgmt

295

o e e
oo =0
) “WeaLuns-* ‘

Graph Coloring

Coloring a map

Problem:

ISE Dept.

Transforn Here

Let G be a graph and m be a given positive integer. We want to
discover whether the nodes of G can be colored in such a way that
no two adjacent node have the same color yet only m colors are
used. This technique is broadly used in “map-coloring”; Four-color
map is the main objective.

Consider the following map and it can be easily decomposed
into the following planner graph beside it :

Department of ISE | BMS Institute of Technology and Mgmt

- J

\
|
/

i
¢

296

ISE Dept.

Transforn Here

. =) =
o =,
) “WeaLuns-* l

ALGORITHM FOR GRAPH COLORING

Algorithm mcolor(k)
:

The graph is represented in the form of matrix nxn
“k"” is an index of vertex to be colored

repeat

i
Nextvalue(k) 2
If (x[k] = 0) then return s
If (k=n) then
Write(x]1:n])
Else
Mcolor{k+1) 4 3

1
i until(false)

e
=

Department of ISE | BMS Institute of Technology and Mgmt 297

ISE Dept.

Transforn Here

Algorithm nextvalue(k)

Assume x[1..k-1] are assigned integer in the range of [1,m] such that no
two adjacent vertices are in the same color

x[k] is assigned the next value such that distinctness is maintained

If no such color exists then x[k|=0

[
]

repeat

i
|

x[k] = (x[k] + 1) mod m+1
if x[k] = O then return
forj=1tondo
i
If (Glk,j]!'=0) and (x[k]=x[j]) then
Break
!
If (j=n+1) then
Return
mntil (false)

Department of ISE | BMS Institute of Technology and Mgmt 298

Graph Coloring

S
o =,
“WeaLuns-*

e

Transforn Here

This map-coloring problem of the given map 7~ A
can be solved from the planner graph, using

the mechanism of backtracking. The state-

space tree for this above map is shown below: 2)
1 { ’;
J\\
= —l}\ Ne, e,
2(r) 2(6 L\\ ? ?
e N

s(r) 8(s) s(e) 8(v)

solution X solution x

Department of ISE | BMS Institute of Technology and Mgmt 299

- i 4
. e ..
o =,
) “WeaLuns-* l

Graph Coloring

Now the map can be
colored as shown here:-

Four colors are chosen as
- Red, Green, Blue and
Yellow

R—s W
c— W
B[]

Y——oD

Department of ISE | BMS Institute of Technology and Mgmt

ISE Dept.

Transforn Here

300

7

E $ »
f é e N
Bt
P
. b

.. Branch and Bound
X

The term Branch means the way in which we search the
state space tree and Bound means assigning bounding
function at each node. This bounding function is used to

prevent the expansion of nodes that cannot possibly
lead to an answer node.

Basically there are two methods used in branch and
bound technique.

1. FIFO based Branch & Bound

2. In this method, the live node form a queue (FIFO
Structure) & each live node will be taken from the
gueue and next live node is selected.

BMS Institute of Technology and Mgmt

301

4 % Branch and Bound 155 Dept.
Least Cost Branch and Bound

At each node, an intelligent ranking function is used to
assign a value to that node. The next live node is

selected on the basis of the least cost.

Travelling sales man problem, a sales man must visit n
cities. The sales man visits each city exactly once and
comes back to the starting city.

The travelling sales man problem is minimization
problem and hence we require to find the lower bound.

BMS Institute of Technology and Mgmt 302

ISE Dept.
Trangforn Here

Assignment Problem : given n jobs <jl1,j2,--- jn> and n persons
<pl,p2,p3 ---pn>, it is required to assign all n jobs to all n persons
with the constraint that one job has to be assigned to one person

and the cost involved in completing all the jobs should be
minimum.

EEETENENE
A 9 2 7 8

B 6 4 3 7
C 5 8 1 8
D 7 6 9 4

Department of ISE | BMS Institute of Technology and Mgmt 303

Example 1

-nnn Take minimum in each row
A 9 2 7 8 2 |

B 6 4 3 7 3
C 5 8 1 8 1
D 7 6 9 4 4

10
H 9 2 7 8

b 3 3 4 3
. 8 5 5 5
4 4 4 6

d
Department of ISE | BMS Institute of Technology and Mgmt 304

ISE Dept.
Transforn Here

Take minimum in each row

3
1
4
10
H 2 2 2
b 6 3 7
c 1 5 1
d 4 4 7

Department of ISE | BMS Institute of Technology and Mgmt 305

ISE Dept.
Transforn Here

Take minimum in each row

A 2 W

H 2 2 n 2
b 6 6 b 6
. 1 8 c 1
d 4 9 d 4

Department of ISE | BMS Institute of Technology and Mgmt 306

Lb=10

Transforn Here

Lb=17

—

Department of ISE | BMS Institute of Technology and Mgmt 307

Example 2

; =R 5
LIS - ..
o —
) “WeaLuns-* ’

A 10 3 8 9
B 7 5 4 8
C 6 9 2 9
D 8 7 10 5

Department of ISE | BMS Institute of Technology and Mgmt 308

Knapsack Problem

Knapsack Problem: Given n items of known weights wi and values vi, i=1, 2, . . .,
n,and a knapsack of capacity W, find the most valuable subset of the items that
fit in the knapsack. It is convenient to order the items of a given instance in
descending order by their value-to-weight ratios. Then the first item gives the

best payoff per weight unit and the last one gives the worst payoff per weight
unit

. . value
item weight value .
weight
1 4 $40 10
2 7 $42 6 The knapsack’s capacity W is 10.
3 5 $25 S
4 3 $12 4

Departmentof ISE = BMS Institute of Technology and Mgmt 309

ISE Dept.

Trangforn: Here

o . value
item weight value —
weight
1 4 $40 10
2 7 $42 6 The knapsack’s capacity W is 10.
3 5 $25 5
4 3 $12 4

First arrange in /W in decreasing order
Since it is @ maximization problem. The upper bound is calculated

using the function ;p —y 4+ (W — w) (V; 1/ Wiy 1)-

i=0,v=0,w=0v,,/w,, =10
Ub =0+ (10) 10 =100

Department of ISE = BMS Institute of Technology and Mgmt 310

ISE Dept.

Transforn Here

Ub = 100

With item 1 Without item 1
i=1, w=4.v=40,v i+1/Wi+1 = i=1, w=0.v=0, v i+1/Wi+1 =6
= 40+6.6 =0+10.6
= 76 = 60
With item 2 With out item 2
i=2,w=7.v=42,v i+1/wi+1 =5 i =2, w=0+4. v=40+0, v i+1/Wi+1 =
5
Ub= v+ (W-w)(v /W)
= 42+(10-11).5 Ub = v+ (W-w)(v /W,)
= Not Feasible =40+6.5
=70

Department of ISE | BMS Institute of Technology and Mgmt 311

ISE Dept.

Transforn Here

Ub = 100

With item 3 Without item 3
i =3, w=5+4. v=40+25, v ,,,/w,,, = 4 i =3, w=4+0. v=40+0, v ;,,/W;,, = 4
Ub= v+ (W-w)(V /W,) Ub = v+ (W-w)(v 1/ Wi,)

=65+1.4 =40+6.4

= 69 = 64
With item 4 With out item 4
i =4, w=9+3 =12. i =4, w=0+9. v=65+0, v i+1/Wi+1 =1
Ub =Vv+ (W'W)(V i+1/Wi+1) Ub = Vv+ (W-W)(V i+1/wi+1)

= Not Feasible =65+1.1

= 66

Department of ISE | BMS Institute of Technology and Mgmt 312

Ub = 100

With item 1 Without item 2

i=1, w=4.v=40, Vv ,,/W,,, = i=1,w=0.v=0,v ,/w,, =6

With item 2 With out item 2
i=2,w=7.v=42,v . ,/w., =5 i =2, w=0+4. v=40+0, v .. /w,

= Not Feasible 70

|+1

With item 3 Without item 3
i =3, w=5+4. v=40+25, v ,,/w;, i =3, w=4+40. v=40+0, v ,,,/w;,, = 4

|+1

With item 4 With out item 4
i =4, w=9+3 =12. i =4, w=0+9. v=65+0, Vv .,,/w.,, =0

65

Not Feasible

Department of ISE | BMS Institute of Technology and Mgmt 313

ravelling Sales Person Problem (s

In the travelling sales man problem, a sales man must visit n
cities. The sales man visits each city exactly once and comes
back to the starting city.

The travelling sales man problem is minimization problem
and hence we require to find the lower bound.

Lower bound=1b=S/2;
Where S = [Va+ Vb+Vc+Vd]
Va = sum of distances from vertex a to the nearest

vertices1+3=4

Vb=1+3=4
Vc=1+2=3
Vd=1+2=3

Lb=[4+4+343]/2=14/2=7

Department of ISE = BMS Institute of Technology and Mgmt 314

Now find,

a—=>b =(3+1)+(3+1)+(1+2)+(1+2)=14/2 =7
a2 c =(1+3)+(3+1)+(1+2)+(1+2) =14/ 2 =7
a—>d =(4+1)+(1+3)+(1+2)+(4+1)=17/2=8

Lb=7

\ 2

Department of ISE | BMS Institute of Technology and Mgmt

ISE Dept.

Transforn Here

315

Now find,

b—=>c =(3+1)+(5+1)+(5+1)+(1+2)=19/2=9
b—=>d =(1+3)+(1+3)+(1+2)+(1+2)=14/2 =7
c>b =(1+3)+(5+1)+(5+1)+(1+2) =19/2 =9
c>d =(1+3)+(3+1)+(2+1)+(2+1)=14/2=7

Lb=7
v

e

ISE Dept.
Transforn Here

Lb=9 Lb=9 =7

Department of ISE | BMS Institute of Technology and Mgmt 316

Now find,

d 2> c = (1+3)+(1+3)+(2+1)+(1+2) = 14/2 =7
d—=> b =(1+3)+(1+3)+(1+2)+(1+2) = 14/2 =7
c =2 a = (1+3)+(1+3)+(1+2)+(1+2)=14/2 =7
b—=>a =(3+1)+(3+1)+(1+2)+(1+2) = 14/2 =7

Lb=7

ISE Dept.
Transforn Here

Lb=8

F a>c>d->b
——— 7
Department of ISE | BMS Institute of Technology and Mgmt 317

ISE Dept.

Transforn Here

Thank you

24-08-2020 Department of ISE | BMS Institute of Technology and Mgmt 318

