
BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Design and Analysis of Algorithm
18CS42
4th Sem

BMS Institute of Technology and Mgmt Department of ISE

Table of Contents

Module
Number

Module Title Page
Number

1 Introduction 1-78

2 Divide and Conquer 79-137

3 Greedy Method 138-187

4 Dynamic Programming 188-257

5 Backtracking 258-317

BMS Institute of Technology and Mgmt Department of ISE

MODULE – 1

INTRODUCTION

1

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Course Outcomes(COs):

CO1 Gain knowledge on various algorithmic concepts to solve
problems.

CO2 Apply the basic knowledge of mathematical fundamentals for
finding time complexity of recursive and non-recursive
algorithms.

CO3 Analyse various problems and choose appropriate algorithmic
technique to use for solving real time problems.

CO4 Design algorithms for various real time applications.

CO5 Conduct investigation on societal problems and develop code
using contemporary computing languages.

CO6 Work in team and communicate effectively on various
algorithmic techniques.

At the end of the course, the students will be able to attain the following

skills.

2

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

 Agenda

 What is an Algorithm?

 Algorithm Specification

 Analysis Framework

 Performance Analysis: Space complexity, Time complexity

 Asymptotic Notations: Big-Oh notation (O), Omega notation (Ω),

 Theta notation (Θ), and Little-oh notation (o)

 Mathematical analysis of Non-Recursive

 Recursive Algorithms with Examples .

 Important Problem Types: Sorting, Searching, String processing, Graph Problems,

Combinatorial Problems.

 Fundamental Data Structures: Stacks, Queues, Graphs, Trees, Sets and Dictionaries.

 3

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

 Learning Outcomes of Module -1

Students will be able to

 Representing real world problem into algorithmic notation.

 Performance analysis of an algorithm.

 Important problem types.

 Fundamental Data structures.

4

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

What is an algorithm?

Algorithmic: The sprit of computing – David Harel.

Another reason for studying algorithms is their
usefulness in developing analytical skills.

Algorithms can be seen as special kinds of solutions to
problems – not answers but rather precisely defined
procedures for getting answers.

5

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

What is an algorithm?

Recipe, process, method, technique, procedure,
routine,… with the following requirements:

1. Finiteness
 terminates after a finite number of steps

2. Definiteness
 rigorously and unambiguously specified

3. Clearly specified input
 valid inputs are clearly specified

4. Clearly specified/expected output
 can be proved to produce the correct output given a valid input

5. Effectiveness
 steps are sufficiently simple and basic

 6

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Algorithm

• Can be represented in various forms

• Unambiguity/clearness

• Effectiveness

• Finiteness/termination

• Correctness

7

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

What is an algorithm?

An algorithm is a sequence of unambiguous instructions
for solving a problem, i.e., for obtaining a required
output for any legitimate input in a finite amount of
time.

 “Computer”

Problem

Algorithm

Input Output

8

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Why study algorithms?

• Theoretical importance

– the core of computer science

• Practical importance

– A practitioner’s toolkit of known algorithms

– Framework for designing and analyzing algorithms for new problems

9

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Euclid’s Algorithm

Problem: Find gcd(m,n), the greatest common divisor of two
nonnegative, not both zero integers m and n

Examples: gcd(60,24) = 12, gcd(60,0) = 60, gcd(0,0) = ?

Euclid’s algorithm is based on repeated application of equality

gcd(m,n) = gcd(n, m mod n)

until the second number becomes 0, which makes the problem

trivial.

Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12

10

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Two descriptions of Euclid’s algorithm

Step 1 If n = 0, return m and stop; otherwise go to Step 2

Step 2 Divide m by n and assign the value of the remainder to r

Step 3 Assign the value of n to m and the value of r to n. Go to
 Step 1.

while n ≠ 0 do

 r ← m mod n

 m← n

 n ← r

return m

11

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Other methods for computing
gcd(m,n)

Consecutive integer checking algorithm

Step 1 Assign the value of min{m,n} to t

Step 2 Divide m by t. If the remainder is 0, go to Step 3;
 otherwise, go to Step 4

Step 3 Divide n by t. If the remainder is 0, return t and stop;
 otherwise, go to Step 4

Step 4 Decrease t by 1 and go to Step 2

Is this slower than Euclid’s algorithm?

How much slower?

12

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Other methods for gcd(m,n)[cont.]

Middle-school procedure

Step 1 Find the prime factorization of m

Step 2 Find the prime factorization of n

Step 3 Find all the common prime factors

Step 4 Compute the product of all the common prime factors
 and return it as gcd(m,n)

Is this an algorithm?

How efficient is it?

13

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Sieve of Eratosthenes
Input: Integer n ≥ 2

Output: List of primes less than or equal to n

for p ← 2 to n do A[p] ← p

for p ← 2 to sqrt(n) do

 if A[p]  0 //p hasn’t been eliminated on previous passes
 j ← p* p

 while j ≤ n do

 A[j] ← 0 //mark element as eliminated

 j ← j + p

Example: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Output: 2 3 5 7 11 13 17 19

14

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Fundamental steps in solving problems

15

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Fundamental steps in solving problems

Statement of the problem

Development of mathematical model

Design of the algorithm

Correctness of the algorithm

Analysis of algorithm for its time and space
complexity

Implementation

Program testing and debugging

Documentation
16

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Important problem types

• Sorting

• Searching

• String processing

• Graph problems

• Combinatorial problems

• Geometric problems

• Numerical problems

17

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Graph Problems

• Informal definition

– A graph is a collection of points called vertices, some of
which are connected by line segments called edges.

• Modeling real-life problems

– Modeling WWW

– Communication networks

– Project scheduling …

• Examples of graph algorithms

– Graph traversal algorithms

– Shortest-path algorithms

– Topological sorting

18

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Linear Data Structures

• Arrays

– A sequence of n items of the same
data type that are stored contiguously
in computer memory and made
accessible by specifying a value of the
array’s index.

• Linked List

– A sequence of zero or more nodes
each containing two kinds of
information: some data and one or
more links called pointers to other
nodes of the linked list.

– Singly linked list (next pointer)

– Doubly linked list (next + previous
pointers)

 Arrays

 fixed length (need preliminary
reservation of memory)

 contiguous memory locations

 direct access

 Insert/delete

 Linked Lists

 dynamic length

 arbitrary memory locations

 access by following links

 Insert/delete

… a1 an a2 .

19

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Stacks and Queues

• Stacks

– A stack of plates
• insertion/deletion can be done only at the top.

• LIFO

– Two operations (push and pop)
• Queues

– A queue of customers waiting for services
• Insertion/enqueue from the rear and deletion/dequeue from the

front.

• FIFO

– Two operations (enqueue and dequeue)

20

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Priority Queue and Heap

 Priority queues (implemented using heaps)

 A data structure for maintaining a set of elements, each associated
with a key/priority, with the following operations

 Finding the element with the highest priority

 Deleting the element with the highest priority

 Inserting a new element

 Scheduling jobs on a shared computer
9

6 8

5 2 3

9 6 5 8 2 3

21

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Graphs

• Formal definition
– A graph G = <V, E> is defined by a pair of two sets: a finite set V of

items called vertices and a set E of vertex pairs called edges.

• Undirected and directed graphs (digraphs).

• What’s the maximum number of edges in an
undirected graph with |V| vertices?

• Complete, dense, and sparse graphs
– A graph with every pair of its vertices connected by an edge is called

complete, K|V|

 1 2

3 4

22

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Graph Representation

• Adjacency matrix

– n x n boolean matrix if |V| is n.

– The element on the ith row and jth column is 1 if there’s an edge from ith
vertex to the jth vertex; otherwise 0.

– The adjacency matrix of an undirected graph is symmetric.

• Adjacency linked lists

– A collection of linked lists, one for each vertex, that contain all the vertices
adjacent to the list’s vertex.

• Which data structure would you use if the graph is a 100-node star shape?

0 1 1 1
0 0 0 1
0 0 0 1
0 0 0 0

2 3 4

4

4

23

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Weighted Graphs

• Weighted graphs
– Graphs or digraphs with numbers assigned to the edges.

1 2

3 4

6

8

5

7
9

24

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Graph Properties -- Paths and Connectivity

• Paths

– A path from vertex u to v of a graph G is defined as a sequence of
adjacent (connected by an edge) vertices that starts with u and ends
with v.

– Simple paths: All edges of a path are distinct.

– Path lengths: the number of edges, or the number of vertices – 1.
• Connected graphs

– A graph is said to be connected if for every pair of its vertices u and v
there is a path from u to v.

• Connected component

– The maximum connected subgraph of a given graph.

25

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Graph Properties -- Acyclicity

• Cycle
– A simple path of a positive length that starts and ends

a the same vertex.

• Acyclic graph
– A graph without cycles

– DAG (Directed Acyclic Graph)

1 2

3 4

26

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Trees

• Trees

– A tree (or free tree) is a connected acyclic graph.

– Forest: a graph that has no cycles but is not necessarily connected.
• Properties of trees

– For every two vertices in a tree there always exists exactly one simple
path from one of these vertices to the other. Why?

• Rooted trees: The above property makes it possible to select an arbitrary vertex in a
free tree and consider it as the root of the so called rooted tree.

• Levels in a rooted tree.

 |E| = |V| - 1 1 3

2 4

5

1

3

2

4 5

rooted

27

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Rooted Trees (I)

• Ancestors

– For any vertex v in a tree T, all the vertices on the simple path
from the root to that vertex are called ancestors.

• Descendants

– All the vertices for which a vertex v is an ancestor are said to be
descendants of v.

• Parent, child and siblings

– If (u, v) is the last edge of the simple path from the root to
vertex v, u is said to be the parent of v and v is called a child of
u.

– Vertices that have the same parent are called siblings.
• Leaves

– A vertex without children is called a leaf.
• Subtree

– A vertex v with all its descendants is called the subtree of T
rooted at v.

28

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Rooted Trees (II)

• Depth of a vertex
– The length of the simple path from the root to the vertex.

• Height of a tree
– The length of the longest simple path from the root to a leaf.

1

3

2

4 5

h = 2

29

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Ordered Trees

• Ordered trees

– An ordered tree is a rooted tree in which all the children of each vertex
are ordered.

• Binary trees

– A binary tree is an ordered tree in which every vertex has no more than
two children and each children is designated s either a left child or a
right child of its parent.

• Binary search trees

– Each vertex is assigned a number.

– A number assigned to each parental vertex is larger than all the
numbers in its left subtree and smaller than all the numbers in its right
subtree.

• log2n  h  n – 1, where h is the height of a binary tree and n the size.

9

6 8

5 2 3

6

3 9

2 5 8

30

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Computing time functions

1 constant

log n logarithmic

n linear

n log n n-log-n

n2 quadratic

n3 cubic

2n exponential

n! factorial

31

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Values of some important functions as n  

32

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Order of growth

• Most important: Order of growth within a
constant multiple as n→∞

• Example:
– How much faster will the algorithm run on computer that is

twice as fast?

– How much longer does it take to solve problem of double
input size?

 33

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

 Best-case, average-case, worst-case

For some algorithms efficiency depends on form of input:

• Worst case: Cworst(n) – maximum over inputs of size n

• Best case: Cbest(n) – minimum over inputs of size n

• Average case: Cavg(n) – “average” over inputs of size n

– Number of times the basic operation will be executed on typical
input.

– NOT the average of worst and best case.

34

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Asymptotic order of growth

A way of comparing functions that ignores constant
factors and small input sizes

• O(g(n)): class of functions f(n) that grow no faster than g(n)

• Θ(g(n)): class of functions f(n) that grow at same rate as g(n)

• Ω(g(n)): class of functions f(n) that grow at least as fast as g(n)

35

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Establishing order of growth using the definition

Definition: f(n) is in O(g(n)) if order of growth of f(n) ≤ order of
growth of g(n) (within constant multiple),
i.e., there exist positive constant c and non-negative integer n0
such that

 f(n) ≤ c g(n) for every n ≥ n0

Example:

• 5n+2 is O(n); c= 7 and n0 = 1

Note : The Upper Bound indicates that the function will be the worst case that it

does not consume more than this computing time.

36

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Big-oh

37

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Establishing order of growth using the definition

38

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Big-omega

39

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Establishing order of growth using the definition

Definition: f(n) is in Ɵ(g(n)) iff there exists three positive
constants c1,c2 and n0 with the constraint that c1 g(n) ≤ f(n)
≤ c2 g(n) for every n ≥ n0 .

Example:

• 3n+2 is Ɵ (n)

• c1 g(n) ≤ f(n) ≤ c2 g(n) for every n ≥ n0

• 3 n ≤ 3n+2 ≤ 4 n for every n0 = 2, c1 = 3, c2 = 4

40

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Big-theta

41

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

 Properties of asymptotic order of growth

• f(n)  O(f(n))

• f(n)  O(g(n)) iff g(n) (f(n))

• If f (n)  O(g (n)) and g(n)  O(h(n)) , then f(n)  O(h(n))

Note similarity with a ≤ b

• If f1(n)  O(g1(n)) and f2(n)  O(g2(n)) , then

 f1(n) + f2(n)  O(max{g1(n), g2(n)})

42

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Time efficiency of nonrecursive

algorithms

General Plan for Analysis

• Decide on parameter n indicating input size

• Identify algorithm’s basic operation

• Determine worst, average, and best cases for input of size n

• Set up a sum for the number of times the basic operation is
executed

• Simplify the sum using standard formulas and rules

43

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Establishing order of growth using limits

lim T(n)/g(n)
=

 0 order of growth of T(n) < order of growth of g(n)

c > 0 order of growth of T(n) = order of growth of g(n)

 ∞ order of growth of T(n) > order of growth of g(n)

Examples:

• 10n vs. n2

• n(n+1)/2 vs. n2

 n→∞

44

BMS Institute of Technology and Mgmt Department of ISE

Example: Sequential search

Worst case - O(n) Best case - Ω(n)

 Average case – Θ(n/2)

45

BMS Institute of Technology and Mgmt Department of ISE

Example 1: Maximum element

46

BMS Institute of Technology and Mgmt Department of ISE

Analysis

1. Input parameter : n

2. Basic operation:

 Comparison

 A[i] > max

3.

4.

47

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Example 2: Element uniqueness
problem

48

BMS Institute of Technology and Mgmt Department of ISE

Analysis

1. Input parameter is input size n

2. Basic operation: Comparison A[i] == A[j]

3.

4.

Є O(n2)

49

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Example 3: Matrix
multiplication

50

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 51

BMS Institute of Technology and Mgmt Department of ISE

Analysis

1. Input parameter is input size n2 X n2

2. Basic operation: Comparison C[i,j] == C[i,j] + A[i,k] * B[k,j]

3.

Є O(n3)

52

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Selection Sort

Algorithm SelectionSort (A[0..n-1])
//The algorithm sorts a given array by selection sort

//Input: An array A[0..n-1] of orderable elements

//Output: Array A[0..n-1] sorted in ascending order

for i  0 to n – 2 do

 min  i

 for j  i + 1 to n – 1 do

 if A[j] < A[min]

 min  j

 swap A[i] and A[min]

Time efficiency: Θ(n2) comparisons (in the worst case)

53

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Solve recurrence relations

• X(n) = x(n-1) + 5 for n>1, x(1) = 0

X(n) = x(n-1) + 5

X(n) = x(n-2) + 5+5

 = x(n-2) + 2 *5

X(n) = x(n-3) + 3*5

X(n) = x(n-n-1) + n-1 * 5

 = x(1) + (n-1) * 5

 = O(n-1) = O(n)

54

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Solve x(n) = 3x(n-1) for n>1, x(1) =4

x(n) = 3x(n-1)

 = 3[3x(n-2)]

 = 32 x(n-2)

 = 33 [x(n-3)]

 = 34 [x(n-4)]

 -

 -

 = 3n-1 [x(n-n-1)]

 =3n-1 [x(1)] = 3n-1 [4] = 4/3 * 3n

55

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Solve

1. X(n) = x(n/2) + n for n>1

2. T(n) = T(n/2) + T(n/2) + 3 for n> 2

 T(2) = 2, T(1) = 1

56

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Plan for Analysis of Recursive

Algorithms
• Decide on a parameter indicating an input’s size.

• Identify the algorithm’s basic operation.

• Check whether the number of times the basic op. is executed

may vary on different inputs of the same size. (If it may, the
worst, average, and best cases must be investigated
separately.)

• Set up a recurrence relation with an appropriate initial
condition expressing the number of times the basic op. is
executed.

• Solve the recurrence (or, at the very least, establish its
solution’s order of growth) by backward substitutions or
another method.

57

BMS Institute of Technology and Mgmt Department of ISE

Example 1: Recursive evaluation of
n!

Definition: n ! = 1  2  … (n-1)  n for n ≥ 1 and
0! = 1

Recursive definition of n!: F(n) = F(n-1)  n for n ≥
1 and

 F(0) = 1

Size:
Basic operation:
Recurrence relation:

58

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

 Solving the recurrence for M(n)

M(n) = M(n-1) + 1, M(0) = 0

Refer Notes

59

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Tower of Hanoi Problem

• In this problem, we have n disks of different sizes and
three pegs.

• Initially, all the disks are on the first peg in order of
size, the largest on the bottom and the smallest on
top.

• The goal is to move all the disks to the third peg,
using the second one as an auxiliary if necessary.

• We can move only one disk at a time, and it is
forbidden to place a larger disk on top of a smaller
one.

60

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Example 2: The Tower of Hanoi
Puzzle

1

2

3

Recurrence for number of moves:

61

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

62

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Solving recurrence for number of
moves

63

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

 n

n-1 n-1

n-2 n-2 n-2 n-2

1 1

...
2

1 1

2

1 1

2

1 1

2

Tree of calls for the Tower of Hanoi

Puzzle

64

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Fibonacci numbers

The Fibonacci numbers:
0, 1, 1, 2, 3, 5, 8, 13, 21, …

The Fibonacci algorithm (recursive)
Fib(n)

{

If n<=1

 return n

Else

Return F(n-1) + F(n-2)

65

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

• The recurrence equation for this problem is:

T(n) = T(n-1) + T(n-2) for n>1 and the initial
conditions are T(0) =0, T(1) = 1

Solution to recurrence relation:

T(n) = T(n-1) + T(n-2)

T(n) –T(n-1) –T(n-2) = 0

This is of the form ax(n) +bx(n-1) +cx(n-2) =0

Which is a homogeneous second order linear
relation with constant co-efficients. 66

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 67

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 68

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Little oh Notation (o)

• The asymptotic upper bound provided by O-
notation may or may not be asymptotically
tight. The bound 2n2 = O(n2) is asymptotically
tight but the bound 2n = o(n2) is not.

• We use o-notation to denote an upper bound
that is not asymptotically tight

• f(n) = o(g(n)); f(n) is equal to the little oh of
g(n), iff f(n) < c, g(n) for any +ve constant c>0,
no>0 and n>no

69

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Establishing order of growth using limits

lim T(n)/g(n)
=

 0 order of growth of T(n) < order of growth of g(n)

c > 0 order of growth of T(n) = order of growth of g(n)

 ∞ order of growth of T(n) > order of growth of g(n)

Examples:

• 10n vs. n2

• 5n + 2 vs. n

 n→∞

70

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Property of the Asymptotic Notations

1. Theorem :If t1(n) Є O(g1(n)) and t2(n) Є
O(g2(n)), then

 t1(n) + t2(n) Є O(max{g1(n), (g2(n)})

2. Theorem: If f(n) = am nm + - - - - + a1 n + a0 and
am >0, then f(n) = O(nm)

71

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Brute Force

A straightforward approach, usually based directly on the
problem’s statement and definitions of the concepts involved

Examples:

1. Computing an (a > 0, n a nonnegative integer)

2. Computing n!

3. Multiplying two matrices

4. Searching for a key of a given value in a list

72

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Brute-Force Sorting Algorithm

Selection Sort Scan the array to find its smallest element and
swap it with the first element. Then, starting with the second
element, scan the elements to the right of it to find the
smallest among them and swap it with the second elements.
Generally, on pass i (0  i  n-2), find the smallest element in
A[i..n-1] and swap it with A[i]:

 A[0]  . . .  A[i-1] | A[i], . . . , A[min], . . ., A[n-1]

 in their final positions

Example: 7 3 2 5

73

BMS Institute of Technology and Mgmt Department of ISE

Analysis of Selection Sort

Time efficiency:

In place:

Stability:

Θ(n^2)

Yes

yes

74

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Brute-Force String Matching

• pattern: a string of m characters to search for

• text: a (longer) string of n characters to search in

• problem: find a substring in the text that matches the pattern

Brute-force algorithm

Step 1 Align pattern at beginning of text

Step 2 Moving from left to right, compare each character of
 pattern to the corresponding character in text until

• all characters are found to match (successful search); or

• a mismatch is detected

Step 3 While pattern is not found and the text is not yet
 exhausted, realign pattern one position to the right and
 repeat Step 2

75

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Examples of Brute-Force String Matching

1. Pattern: 001011
Text: 10010101101001100101111010

2. Pattern: happy
Text: It is never too late to have a

happy childhood.

 76

BMS Institute of Technology and Mgmt Department of ISE

Pseudocode and Efficiency

Time efficiency: Θ(mn) comparisons (in the worst case)

77

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Brute-Force Strengths and
Weaknesses

• Strengths
– wide applicability

– simplicity

– yields reasonable algorithms for some important problems
(e.g., matrix multiplication, sorting, searching, string
matching)

• Weaknesses
– rarely yields efficient algorithms

– some brute-force algorithms are unacceptably slow

– not as constructive as some other design techniques

78

BMS Institute of Technology and Mgmt Department of ISE

MODULE – 2

DIVIDE AND CONQUER

79

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Divide-and-Conquer

The most-well known algorithm design strategy

1. Divide instance of problem into two or more
smaller instances

2. Solve smaller instances recursively

3. Obtain solution to original (larger) instance by
combining these solutions

80

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Divide and conquer involves three steps,
at each level of recursion.

• Divide: Divide the problem into a number of
sub problems

• Conquer: Conquer the sub problems by
solving them recursively. If the sub – problem
sizes are small enough, then solve the sub-
problem in a straight forward manner.

• Combine: combine the solutions to the sub-
problems to get the solution to the original
problem.

81

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Divide-and-Conquer Technique (cont.)

subproblem 2

of size n/2

subproblem 1

of size n/2

a solution to

subproblem 1

a solution to

the original problem

a solution to

subproblem 2

a problem of size n
 (instance)

In general leads to a

recursive algorithm!

T(n) = a T(n/b) + f (n)

where f(n)  (nd), d  0

 82

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Divide-and-Conquer Examples
• Sorting: merge sort and quicksort

• Finding min and max element in an array

• Binary search

• Multiplication of large integers

• Matrix multiplication: Strassen’s algorithm

83

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

General Divide-and-Conquer Recurrence

T(n) = aT(n/b) + f (n) where f(n)  (nd), d  0

Master Theorem: If a < bd, T(n)  (nd)

 If a = bd, T(n)  (nd log n)

 If a > bd, T(n)  (nlog b a
)

Note: The same results hold with O instead of .

Examples: T(n) = 4T(n/2) + n  T(n)  ?

 T(n) = 4T(n/2) + n2  T(n)  ?

 T(n) = 4T(n/2) + n3  T(n)  ?

(n^2)

(n^2log n)

(n^3)

84

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Merge Sort Algorithm
Mergesort(low, high)
//Given an array A of n elements. This algorithm sorts the elements in
//ascending order. The variables low and high are used to identify the
//positions of first and last element in each partition.

1. If (low< high)

2. mid = (low+high)/2;

3. Mergesort (low,mid);

4. Mergesort(mid+1,high);

5. Merge(low,mid,high);

6. End if

7. Exit

85

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Merge Algorithm
Merge(low, mid, high)
// The variables low, mid, and high are used to identify the
portions of elements in each partition.

1. Initialize i=low, j= mid+1, h=low;

2. while ((h <= mid) && (j <= high))

3. if (a[h] < a[j])

 b[i++] = a[h++];

 else

 b[i++] = a[j++];

86

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Cont…

4. if (h > mid)

 for(k = j; k <= high; k++)

 b[i++] = a[k];

 else

 for (k = h; k <= mid; k++)

 b[i++] = a[k];

5. for (k = low; k <= high; k++)

 a[k] = b[k];

 87

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Mergesort
• Split array A[0..n-1] into about equal halves and make

copies of each half in arrays B and C

• Sort arrays B and C recursively

• Merge sorted arrays B and C into array A as follows:

– Repeat the following until no elements remain in one of the arrays:

• compare the first elements in the remaining unprocessed portions
of the arrays

• copy the smaller of the two into A, while incrementing the index
indicating the unprocessed portion of that array

– Once all elements in one of the arrays are processed, copy the
remaining unprocessed elements from the other array into A.

88

BMS Institute of Technology and Mgmt Department of ISE

Mergesort Example

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

3 8 2 9 1 7 4 5

2 3 8 9 1 4 5 7

1 2 3 4 5 7 8 9

The non-recursive

version of Mergesort

starts from merging

single elements into

sorted pairs.

89

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Analysis of Mergesort

90

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

• All cases have same efficiency: Θ(n log n)

• Number of comparisons in the worst case is
close to theoretical minimum for comparison-
based sorting:
 log2 n! ≈ n log2 n - 1.44n

• Space requirement: Θ(n) (not in-place)

• Can be implemented without recursion

91

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Quicksort
• Select a pivot (partitioning element) – as the first element

•

• Exchange the pivot with the last element in the first (i.e., )
subarray — the pivot is now in its final position

• Sort the two subarrays recursively

• Note : Invented by

p

A[i]p A[i]p

p

A[i]p A[i]p

i j

92

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Quick Sort Algorithm

Quick sort(low, high)

// A is an array of elements.

// The variables low and high are used to identify the positions of first and

// last elements in each partition.

If(low< high) then

 J= partition(low, high)

 Quick sort(low, j-1)

 Quick sort(j+1, high)

End if

Exit

93

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Partition Algorithm
Partition(low, high)

//This procedure partitions the element into two lists and places the pivot
//element into a appropriate place. Low = first element of the array, high =
//last element of the array, a[low] = pivot.

Step 1. Set pivot = a[low];

 i = low +1;

 j = high;

Step 2. Repeat step 3 while (a[i] < pivot && i < high)

Step 3. i++;

Step 4. Repeat step 5 while (a[j] > pivot)

Step 5. j--;

Step 6. If(i<j)

 swap a[i] and a[j]

 go to step 2

 else

 swap a[j] and pivot

Step 7. Return (j)
94

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Quicksort Example

5 3 1 9 8 2 4 7

 2 3 1 4 5 8 9 7

1 2 3 4 5 7 8 9

1 2 3 4 5 7 8 9

1 2 3 4 5 7 8 9

1 2 3 4 5 7 8 9

95

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Analysis of Quicksort
• Best case: split in the middle — Θ(n log n)

• Worst case: sorted array! — Θ(n2)

• Average case: random arrays — Θ(n log n)

• Improvements:
– better pivot selection: median of three partitioning

– switch to insertion sort on small subfiles

– elimination of recursion

These combine to 20-25% improvement

• Considered the method of choice for internal sorting of large
files (n ≥ 10000)

T(n) = T(n-1) + Θ(n)

96

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Binary Search
Algorithm Binary_Search(A[0…n-1], Key)
Input: Given an array of n elements in sorted order and key is an element to be

searched.
Output: Returns the position of key element, if successful and returns -1

otherwise.
1. Set first = 0, last = n-1
2. While (first < = last)
 mid = (first +last) / 2
 if (key == A[mid])
 return (mid+1); // successful
 else if (key < A[mid])
 last = mid – 1
 else
 first = mid+1
 end while
3. return -1 // unsuccessful

97

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Analysis

Best Case: Best case occurs, when we are
searching the middle element itself. In that case,
total number of comparisons required is 1. there
fore best case time complexity of binary search
is Ω(1).

Worst Case: Let T(n) be the cost involved to
search ‘n’ elements. Let T(n/2) be the cost
involved to search either left part or the right
part of an array.

98

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Analysis

T(n) = a if n = 1

 T(n/2) + b otherwise

T(n/2)  Time required to search either the left
part or the right part of the array.

b  Time required to compare the middle element.

Where a and b are some positive integer constants.

 T(n) = O(log 2n)

99

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Analysis

Average Case:

The average case occurs when an element is found some where
in the recursive calls, but not till the recursive call ends.

The average number of key comparisons made by binary search
is only slightly smaller than that in this worst case.

T(n) = log 2n

The average number of comparison in a successful search is

T(n) = log 2n – 1

The average number of comparison in a unsuccessful search is

T(n) = log 2n + 1

100

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Algorithm for straight forward maximum and
minimum

StraightMaxMin(a,n,max,min)

// set max to the maximum and min to the minimum of a[1:n].

{

 max := min := a[1];

 for i := 2 to n do

 {

 if(a[i] > max) then max := a[i];

 if(a[i] < min) then min := a[i];

 }

}

101

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Analysis

• This algorithm requires 2(n-1) element
comparisons in the best, average, and worst
cases.

• Now the Best case occurs when the elements
are in increasing order. The number of
element comparisons is n-1.

• The worst case occurs when the element are
in decreasing order. In this case number of
comparisons is 2(n-1).

 102

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Finding maximum and minimum using
divide and conquer technique

Algorithm max_min(i, j, max, min)

{

// Input: a[1:n] is a global array. Parameters i and j
are integers, 1<=i <= j<= n.

// output: to set max and min to the largest and
smallest values in a[i: j], respectively.

If (i == j) then // Small(P)

{ max = min  A[i];

}

103

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

else if (i =j-1) then // Another case of Small(P)

{

 if (A[i] < A[j]) then

 {

 max  A[j]

 min  A[i]

 }

 else

 {

 max  A[i]

 min  A[j]

}

} 104

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

else

{

 // if P is not small, divide P into sub problems. //
Find where to split the set

 mid := (i+j)/2;

 // Solve the sub problems.

max_min(i,mid,max,min);

max_min(mid+1, j, max1,min1);

// Combine the solutions

 if(max < max1) then max := max1;

 if(min > min1) then min:= min1;

 }

}

105

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Analysis
 0 n=1

T(n) = 1 n=2

 T(n/2) + T(n/2) + 2 n>2

 When n is a power of two, n = 2k for some positive integer k, then

 T(n) = 2T(n/2) + 2

 = 2T(2k-1)) + 2

 = 2(2T(2k-2) + 2) + 2

 = 22T(2k-2) + 22 + 2

 = 23T(2k-3) + 23 + 22 + 2

 . . .

 = 2k-1 T(2k-(k-1)) + 2k-2 + 2k-1 + - - - + 21

 = 2k-1 + 2k-2 + - - - + 21

 = 2. (2k-1 – 1)/ 2-1 = O(n)

 106

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Multiplication of Large Integers
Consider the problem of multiplying two (large) n-digit integers
represented by arrays of their digits such as:

A = 12345678901357986429 B = 87654321284820912836

The grade-school algorithm:

 a1 a2 … an

 b1 b2 … bn

 (d10) d11d12 … d1n

 (d20) d21d22 … d2n

 … … … … … … …
(dn0) dn1dn2 … dnn

Efficiency: Θ(n2) single-digit multiplications

107

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

First Divide-and-Conquer
Algorithm

A small example: A  B where A = 2135 and B = 4014

A = (21·102 + 35), B = (40 ·102 + 14)

So, A  B = (21 ·102 + 35)  (40 ·102 + 14)

 = 21  40 ·104 + (21  14 + 35  40) ·102 + 35  14

In general, if A = A1A2 and B = B1B2 (where A and B are n-digit,

A1, A2, B1, B2 are n/2-digit numbers),

A  B = A1  B1·10n + (A1  B2 + A2  B1) ·10n/2 + A2  B2

Recurrence for the number of one-digit multiplications M(n):

 M(n) = 4M(n/2), M(1) = 1
Solution: M(n) = n2

108

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Second Divide-and-Conquer
Algorithm

A  B = A1  B1·10n + (A1  B2 + A2  B1) ·10n/2 + A2  B2

The idea is to decrease the number of multiplications from 4 to 3:

 (A1 + A2)  (B1 + B2) = A1  B1 + (A1  B2 + A2  B1) + A2  B2,

I.e., (A1  B2 + A2  B1) = (A1 + A2)  (B1 + B2) - A1  B1 - A2  B2,
which requires only 3 multiplications at the expense of (4-1) extra
add/sub.

Recurrence for the number of multiplications M(n):

 M(n) = 3M(n/2), M(1) = 1

Solution: M(n) = 3log 2n = nlog 23 ≈ n1.585

What if we count

both multiplications

and additions?

109

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Example of Large-Integer
Multiplication

2135  4014

= (21*10^2 + 35) * (40*10^2 + 14)

= (21*40)*10^4 + c1*10^2 + 35*14

where c1 = (21+35)*(40+14) - 21*40 - 35*14, and

21*40 = (2*10 + 1) * (4*10 + 0)

 = (2*4)*10^2 + c2*10 + 1*0

where c2 = (2+1)*(4+0) - 2*4 - 1*0, etc.

This process requires 9 digit multiplications as opposed to 16.

110

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Matrix Multiplication

• Brute-force algorithm

 c11 c12 a11 a12 b11 b12

 = *

 c21 c22 a21 a22 b21 b22

 a11 * b11 + a12 * b21 a11 * b12 + a12 * b22

 =

 a21 * b11 + a22 * b21 a21 * b12 + a22 * b22

8 multiplications

4 additions
Efficiency class in general:  (n3)

111

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Strassen’s Matrix Multiplication

• Strassen’s algorithm for two 2x2 matrices (1969):

c11 c12 a11 a12 b11 b12

 = *

c21 c22 a21 a22 b21 b22

 C1 = E + I + J - G C2 = D + G

 =

 C3 = E + F C4 = D + H + J - F
D = A1(B2 – B4)

E = A4(B3 – B1)

F = (A3 + A4) B1

G = (A1 + A2) B4

H = (A3 – A1) (B1 + B2)

I = (A2 – A4) (B3 +B4)

J = (A1 +A4)(B1 +B4)

7 multiplications

18 additions

112

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Strassen’s Matrix Multiplication

A = B =

A1 = 1, A2 =2, A3 = 3, A4 = 4

B1 = 1, B2 = 2, B3 = 2, B4 = 2

1. D = A1(B2 – B4) = 1(1 – 2) = -1

2. E = A4(B3-B1) = 4(2-1) = 4

3. F = (A3 + A4) B1 = (3+4)1 = 7

4. G = (A1 + A2)B4 = (1+2)2 = 6

1 2
3 4

1 1
2 2

113

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

5. H = (A3 – A1) (B1 + B2) = (3-1)(1+1) = 4

6. I = (A2 – A4)(B3+B4) = (2-4)(2+2) = -8

7. J = (A1+A4)(B1+B4) = (1+4)(1+2) = 15

C1 = E +I+J-G = 4+(-8) +15-6 = 5

C2 = D + G = -1 +6 = 5 C =

C3 = E + F = 4 + 7 = 11

C4 = D + H + J – F = -1 +4 +15 -7 = 11

5 5
11 11

114

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Strassen’s Matrix Multiplication
 Strassen observed [1969] that the product of two

matrices can be computed in general as follows:

C00 C01 A00 A01 B00 B01

 = *

C10 C11 A10 A11 B10 B11

 M1 + M4 - M5 + M7 M3 + M5

 =

 M2 + M4 M1 + M3 - M2 + M6

115

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Formulas for Strassen’s Algorithm
M1 = (A00 + A11)  (B00 + B11)

M2 = (A10 + A11)  B00

M3 = A00  (B01 - B11)

M4 = A11  (B10 - B00)

M5 = (A00 + A01)  B11

M6 = (A10 - A00)  (B00 + B01)

M7 = (A01 - A11)  (B10 + B11)

116

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

1 2

3 4

A00 A01

A10 A11

1 1

2 2

B00 B01

B10 B11

M1 = (A00 + A11)  (B00 + B11)
 = (1 + 4) * (1+2) = 15

M2 = (A10 + A11)  B00

 = (3 + 4) * 1 = 7

M3 = A00  (B01 - B11)
 = 1 * (1 - 2) = -1

M4 = A11  (B10 - B00)
 = 4 * (2 - 1) = 4

M5 = (A00 + A01)  B11
 = (1 + 2) * 2 = 6

M6 = (A10 - A00)  (B00 + B01)
 = (3 - 1) * (1 + 1) = 4

M7 = (A01 - A11)  (B10 + B11)
 = (2 - 4) * (2 + 2) = -8

M1 + M4 - M5 + M7 M3 + M5

M2 + M4 M1 + M3 - M2 + M6

C00 C01

C10 C11

5 5

11 11

=

117

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

2 1

3 4

A00 A01

A10 A11

5 2

1 2

B00 B01

B10 B11

M1 = (A00 + A11)  (B00 + B11)
 = (2 + 4) * (5+2) = 42

M2 = (A10 + A11)  B00

 = (3 + 4) * 5 = 35

M3 = A00  (B01 - B11)
 = 2 * (2 - 2) = 0

M4 = A11  (B10 - B00)
 = 4 * (1 - 5) = -16

M5 = (A00 + A01)  B11
 = (2 + 1) * 2 = 6

M6 = (A10 - A00)  (B00 + B01)
 = (3 - 2) * (5 + 2) = 7

M7 = (A01 - A11)  (B10 + B11)
 = (1 - 4) * (1 + 2) = -9

M1 + M4 - M5 + M7 M3 + M5

M2 + M4 M1 + M3 - M2 + M6

C00 C01

C10 C11

11 6

19 14

=

118

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Solve
1 0 2 1
4 1 1 0
0 1 3 0
5 0 2 1

0 1 0 1
2 1 0 4
2 0 1 1
1 3 5 0

1 0
4 1

2 1
1 0

0 1
5 0

3 0
2 1

0 1
2 1

0 1
0 4

2 0
1 3

1 1
5 0

A1 A2

A3 A4

B1 B2

B3 B4

A = B =

119

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

1 0
4 1

0 1
0 4

1. D = A1 (B2 – B4)

-
1 1
5 0

1 0
4 1

*

*
-1 0
-5 4

-6 0
-9 4

2. E = A4 (B3 – B1)

120

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Analysis of Strassen’s Algorithm

If n is not a power of 2, matrices can be padded with zeros.

Number of multiplications:

 M(n) = 7M(n/2), M(1) = 1

M(n) = 7M(2 k-1)

 = 7[7M(2 k-2)] = 7 2 M(2 k-2)]

 = 7 k M(2 k-k)] = 7 k (1)

Solution: M(n) = 7log
2

n = nlog
2

7 ≈ n2.807 vs. n3 of brute-force alg.

121

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Advantages and Disadvantages
• Difficult problems is broken down into sub

problems and each sub problem is solved
independently.

• It gives efficient algorithms like quick sort,
merge sort, streassen’s matrix multiplication.

• Sub problems can be executed on parallel
processor.

Disadvantage

• It makes use of recursive methods and the
recursion is slow and complex.

122

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Decrease-and-Conquer

The decrease and conquer technique is almost similar to the
divide and conquer technique, but instead of dividing the
problem into size n/2, it is decremented by a constant or
constant factor.

There are three variations of decrease and conquer

• Decrease by a constant

• Decrease by a constant factor

• Variable size decrease

The problems can be solved either top down (recursively) or
bottom up (without recursion)

 123

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Decrease by a constant

• In this type of variation, the size of an instance
is reduced by the same constant ‘1’ on each
iteration. So, if a problem is of size ‘n’ , then a
sub problem of size ‘n-1’ is solved first but
before a sub sub problem of size ‘n-2’ is solved
and so on.

124

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Decrease by a constant

…….

…….

Problem of Size n

Sub Problem of Size (n – 1)

Solution to sub problem

Solution to the Original
Problem

1 2 n

1 n-1

 ….

 (n -2)

125

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Decrease by a constant

Example: Consider a problem for computing a n
where n is a positive integer exponent

Let f(n) = a n

 a n = a n-1 . a

 = a n-2 . a . a

 = a n-3 . a . a . a

 = a. a. a. a. . . n times

F(n) = f(n-1) . a if n> 1
 a if n = 1

The above definition is a recursive definition i.e, a top down approach

Eg: Insertion sort, Depth First Search, Breath First Search,

Topological Sort
126

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Decrease by a constant factor

• In this type of variation, the size of instance is
reduced by a constant factor on each iteration
(most of the case it is 2).

• So, if a problem of size ‘n’ is to be solved then
first the sub problem of size n/2 is to be solved
which in-turn requires the solution for the sub
sub problem n/4 and so on.

127

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Decrease by a constant factor

…….

…….

Problem of Size n

Sub Problem of Size (n / 2)

Solution to sub problem

Solution to the Original
Problem

1 2 n

1 n/2

(n / 4)

 - - -

128

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Decrease by a constant factor

Example: Consider a problem for computing an

As the problem is to be halved each time (Since
the constant factor is 2, to solve a n, first solve an/2

, but before solve an/4 and so on.

an = (an/2) 2 if n is even and > 1

 (an-1/2) 2 if n is odd and > 1

 a if n = 1

129

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

The efficiency of this variation i.e decrease by a
constant factor is O(log n) because, the size is
reduced by at least one half at the expense of
no more than two multiplications on each
iteration

Eg: Binary search and the method of bisection,
Fake coin problem

Decrease by a constant factor

130

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Variable size decrease

In this type, the reduction in the size of the
problem instance is varied from one iteration to
another.

gcd (m,n) = gcd (n, m mod n) if n> 0
 m if n=0

Eg: Euclid’s algorithm for computing
GCD of two nos.

Eg: Computing a median, Interpolation Search
and Binary Search Tree

131

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

DAGs and Topological Sorting
A dag: a directed acyclic graph, i.e. a directed graph with no
(directed) cycles

Arise in modeling many problems that involve prerequisite
constraints (construction projects, document version control)

Vertices of a dag can be linearly ordered so that for every edge its
starting vertex is listed before its ending vertex (topological
sorting). Being a dag is also a necessary condition for topological
sorting to be possible.

a b

c d

a b

c d

a dag not a dag

132

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Topological Sorting Example
Order the following items in a food chain

fish

human

shrimp

sheep

wheat plankton

tiger

133

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

DFS-based Algorithm

DFS-based algorithm for topological sorting

– Perform DFS traversal, noting the order vertices
are popped off the traversal stack

– Reverse order solves topological sorting problem

– Back edges encountered?→ NOT a dag!
Example:

Efficiency: The same as that of DFS.

b a

e f

c d

g h

134

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Source Removal Algorithm

Repeatedly identify and remove a source (a vertex with no
incoming edges) and all the edges incident to it until either no
vertex is left or there is no source among the remaining
vertices (not a dag)

Example: 1

Efficiency: same as efficiency of the DFS-based algorithm, but how would you
identify a source? How do you remove a source from the dag?

e

b

e f

c d

g h

a

d

c

b

a

Example 2

135

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Source Removal Algorithm

Topological Sort(G)

1. Find the indegree INDG(n) of each node n of
G.

2. Put in a queue Q all the nodes with zero
indegree.

3. Repeat step 4 and 5 until G becomes empty.

4. Repeat the element n of the queue Q and
add it to T (Set Front = Front +1).

136

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Source Removal Algorithm

5. Repeat the following for each neighbour, m of
the node n

 a) Set INDEG(m) = INDG(m)-1

 b) If INDEG(m) = 0 then add m to the rear end

 of the Q.

6. Exit.

Note: For Problems refer class notes

137

BMS Institute of Technology and Mgmt Department of ISE

MODULE – 3

GREEDY METHOD

138

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Greedy Method
• Approach for Solving problem

• Used for Solving Optimization Problem

• Optimization Problem : Problems which demands

minimum/maximum results

• Example:

 A B

 S1 S2 S3 S4 S5……

 There will be only one minimum solution

12 hrs Minimum cost

Optimal solution Feasible solutions

139

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Strategies used for Optimization
Problem

• Greedy Method

• Dynamic Programming

• Branch and Bound

140

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

 Greedy Technique

24-08-2020 4

Greedy algorithms, construct a solution through a
sequence of steps, each step expanding a partially
constructed solution obtained so far, until a complete
solution to the problem is reached.

 feasible -it has to satisfy the problem’s constraints

 locally optimal - it has to be the best local choice

among all feasible choices available on that step

 irrevocable - once made, it cannot be changed on

subsequent steps of the algorithm

141

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

General method control abstraction

Algorithm Greedy(a, n)

// a[1..n] contains the ‘n’ inputs

{

Solution := 0; //Initialize the solution
for i:= 1 to n do

{

X : = Select(a);

If Feasible(Solution, x) then

Solution:= Union(Solution, x);

}

Return Solution;

}
142

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Applications of the Greedy Strategy

• Optimal solutions:
– change making for “normal” coin denominations

– minimum spanning tree (MST)

– single-source shortest paths

– simple scheduling problems

– Huffman codes

• Approximations/heuristics:
– traveling salesman problem (TSP)

– knapsack problem

– other combinatorial optimization problems

143

Differences b/w Divide and conquer and greedy
Method

144

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Change-Making Problem
• Problem Statement: Given coins of several denominations

find out a way to give a customer an amount with fewest

number of coins.

• Example: if denominations are 1,5,10, 25 and 100 and the

change required is 30, the solutions are,

• Amount : 30

• Solutions : 3 x 10 (3 coins)

 6 x 5 (6 coins)

 1 x 25 + 5 x 1 (6 coins)

 1 x 25 + 1 x 5 (2 coins)

The last solution is the optimal one as it gives us change only with 2

coins. 145

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Change-Making Problem

Given unlimited amounts of coins of denominations d1 > … >dn,

give change for amount n with the least number of coins

Solution: <1, 2, 0, 3>

Example: d1 = 25c, d2 =10c, d3 = 5c, d4 = 1c and n = 48c

Greedy solution is optimal for any amount and “normal’’ set of

denominations

146

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

cashier’s Algorithm

Algorithm coinchange()

//Input: Denomination d[1] > d[2] >
d*3+ … d*n+

//Amount to obtain change – C

// Output: The optimal number of
coins for change of C, is stored in
Coins[i]

for i  1 to n do

 {

 Coins[i] = C/d[i];

 C = C mod d[i]

 Print coins[i]

 }

{25,10,1} for 30c

147

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Change-Making Problem

For example, d1 = 25c, d2 = 10c, d3 = 1c, and n = 30c

Solution: <1, 0, 5>

May not be optimal for all denominations

148

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Knapsack Problem
 (Fractional knapsack problem)

Given n objects and a knapsack or bag. Object i has a

weight wi and the knapsack has a capacity m. if the

fraction Xi, 0<=Xi<=1, of object i is placed into the

knapsack, then a profit of Pi*Xi is earned.

The objective is to maximize the total profit earned.

Since the knapsack capacity is m, we require the total

weight of all chosen objects to be at most m.

149

BMS Institute of Technology and Mgmt Department of ISE

Knapsack Problem - 1

Obtain the optimal solution for the knapsack

problem using greedy method given the

following:

M = 15

n = 7

p1,p2,p3,p4,p5,p6,p7 = 10,5,15,7,6,18,3

w1,w2,w3,w4,w5,w6,w7= 2,3,5,7,1,4,1

150

BMS Institute of Technology and Mgmt Department of ISE

There are several greedy methods to obtain the feasible solutions.

151

BMS Institute of Technology and Mgmt Department of ISE

Profits = Solution Vector = (1, 0,1, 4/7,0,1,0)= (1, 0,1, 0.57,0,1,0)

Optimal solution using this method is (x1, x2, x3,x4,x5,x6,x7) = (1, 0,1, 0.57,0,1,0)

with profit = 47
152

BMS Institute of Technology and Mgmt Department of ISE

Profits = Solution Vector = (1, 1,4/5,0,1,1,1)= (1, 1,0.8,0,1,1,1)

Optimal solution using this method is (x1, x2, x3,x4,x5,x6,x7) = (1, 1,0.8,0,1,1,1)

 with profit = 54

Optimal solution is not guaranteed using method 1 and 2

153

BMS Institute of Technology and Mgmt Department of ISE

Profits = Solution Vector = (1, 2/3,1,0, 1,1,1)= (1, 0.67,1,0, 1,1,1)

Optimal solution is (x1, x2, x3,x4,x5,x6,x7) = (1, 0.67,1,0, 1,1,1)

with profit [1*10+0.67*5+1*15+0*7+1*6+1*18+1*3]= 55.34

Weight=[1*2+0.67*3+1*5+0*7+1*1+1*4+1*1]=15

This greedy approach always results optimal solution

154

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Knapsack Problem
 (Fractional knapsack problem)

Given n objects and a knapsack or bag. Object i has a

weight wi and the knapsack has a capacity m. if the

fraction Xi, 0<=Xi<=1, of object i is placed into the

knapsack, then a profit of Pi*Xi is earned.

The objective is to maximize the total profit earned.

Since the knapsack capacity is m, we require the total

weight of all chosen objects to be at most m.

155

BMS Institute of Technology and Mgmt Department of ISE

Knapsack problem

156

BMS Institute of Technology and Mgmt Department of ISE

Knapsack Algorithm

Algorithm Greedy Knapsack(m,n)

//p[1:n] and w[1:n] contain the profits and weights respectively, of the n

objects ordered such that p[i]/w[i] >= p[i+1]/w[i+1].

// m is the knapsack size and x[1:n] is the solution vector

{

for i := 1 to n do x[i] := 0.0; //Initialize x

U := m;//sack capacity

for i:=1 to n do

{

 if (w[i] > U) then break; // weight of an object is greater than sack capacity

 x[i] := 1.0; U:=U-w[i];

}

If(i<=n) then x[i]:=U/w[i];

}

Analysis: Disregarding the time to initially sort the object, each
of the above strategies use O(n) time

 157

BMS Institute of Technology and Mgmt Department of ISE

Problem - 2

Obtain the optimal solution for the knapsack

problem using greedy method given the

following:

M=40 , n=3

w1,w2,w3 = 20,25,10

p1,p2,p2 = 30,40,35

158

BMS Institute of Technology and Mgmt Department of ISE

Job Sequencing with Deadline

Given an array of jobs where every job has a deadline
and associated profit, the job is to be finished before
the deadline. It is also given that every job takes
single unit of time. So the minimum possible deadline
for any job is 1. the objective is to maximize total
profit, provided only one job can be scheduled at a
time.

159

BMS Institute of Technology and Mgmt Department of ISE

For the following sequence of job, give the snapshot of

execution which will achieve maximum profit.

Jobs n= 5

p1,p2,p3,p4,p5 = 20,15,10,1,6

d1,d2,d3,d4,d5 = 2, 2, 1, 3,3

Problem 1

160

BMS Institute of Technology and Mgmt Department of ISE

Problem 1

161

BMS Institute of Technology and Mgmt Department of ISE

162

BMS Institute of Technology and Mgmt Department of ISE

Job Sequencing with Deadline

163

BMS Institute of Technology and Mgmt Department of ISE

Minimum Spanning Tree (MST)

Spanning tree of a connected graph G: a connected acyclic
subgraph of G that includes all of G’s vertices

c

d
b

a

6

2

4

3

1

c

d
b

a

6

4 1

c

d
b

a

2

3

1

164

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Minimum spanning tree of a weighted, connected graph G: a
spanning tree of G of the minimum total weight

Example:

c

d
b

a

6

2

4

3

1

c

d
b

a

6

4 1

c

d
b

a

2

3

1

COST=11 COST=6

165

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

166

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Minimum Cost spanning Tree
algorithms

• Prim’s algorithm

• Kruskal’s algorithm

167

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

MST – Prim’s algorithm

168

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

169

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 170

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 171

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Efficiency

The time efficiency of depends on the data
structures used for implementing the priority
queue and for representing the input graph.

Since we have implemented using weighted
matrix and unordered array, the efficiency is
O(|V2|).

 If we implement using adjacency list and the
priority queue for min-heap, the efficiency is
O(|E|log|V|).

172

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Kruskal’s algorithm

Kruskal's algorithm finds MST of a weighted

connected graph G=<V,E> as an acyclic subgraph

with |V| - 1 edges. Sum of all the edges weight

should be minimum.

The algorithm begins by sorting the graph’s
edges in increasing order of their weights.

Then it scans this sorted list starting with the
empty sub graph and it adds the next edge on
the list to the current sub graph, if such an
inclusion doesn’t create a cycle and simply
skipping the edges.

173

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

174

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

175

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

176

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Time complexity

The crucial check whether two vertices belong to the

same tree can be found out using union -find algorithms.

177

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Shortest paths – Dijkstra’s
algorithm

 The Dijkstra’s algorithm finds the shortest path
from a given vertex to all the remaining vertices
in a diagraph.

We have to find out the shortest path from a
given source vertex ‘S’ to each of the
destinations (other vertices) in the graph.

The constraint is that each edge has non-
negative cost. The length of the path is the sum
of the costs of the edges on the path.

178

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

1

2 3

4
5

60 100

50
20

10

5

20

 0 1 0 0 0 0 S

 ∞ 1 60 100 ∞ 10 d

1

2 3

4
5

60 10

0

20

5

20 50

10

Initially

1 2 3 4

5

Example

179

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

1

2 3

4
5

60 100

50
20

10

5

20

 1 0 0 0 1 S

 1 60 100 ∞ 10 d

1

2 3

4
5

60 100

20

5

20 50

10

1 2 3 4 5

Example

180

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

1

2 3

4
5

60 100

50
20

10

5

20

 1 0 0 1 1 S

 1 60 100 15 10 d

1

2 3

4
5

60 100

20

5

20 50

10

1 2 3 4 5
Example

181

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

1

2 3

4
5

60 100

50
20

10

5

20

 1 0 1 1 1 S

 1 60 35 15 10 d

1

2 3

4
5

60 100

20

5

20 50

10

 1 2 3 4 5

Example

182

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

1

2 3

4
5

60 100

50
20

10

5

20

 1 1 1 1 1 S

 1 60 35 15 10 d

1

2 3

4
5

60 100

20

5

20 50

10

1 2 3 4 5

Final distance form note 1 to

all other nodes
Example

183

BMS Institute of Technology and Mgmt Department of ISE

Example2

d
4

Tree vertices Remaining vertices

 a(-,0) b(a,3) c(-,∞) d(a,7) e(-,∞)

a

b
4

e

3

7

6
2 5

 c

a

b

d

4
c

e

3

7 4

6
2 5

a

b

d

4
c

e

3

7 4

6
2 5

a

b

d

4
c

e

3

7 4

6
2 5

 b(a,3) c(b,3+4) d(b,3+2) e(-,∞)

 d(b,5) c(b,7) e(d,5+4)

 c(b,7) e(d,9)

 e(d,9)

d

a

b

d

4
c

e

3

7 4

6
2 5

184

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Dijkstra’s algorithm
Dijkstra’s(s)
// Finds shortest path from source vertex to all other vertices
//Input: Weighted connected graph G=<V,E> with nonnegative
weights and its vertices s
//Output: The length of distance of a shortest path from s to v
{
1. for i = 1 to n do // Intialize
 S[i] = 0;
 d[i] = a[s][i];

2. S[s] = 1; //Assume 1 as the source vertex
 d[s] = 1;

185

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Dijkstra’s algorithm

3. for i = 1 to n do
 {
 Choose a vertex u in v-s such that d[u] is
 minimum
 S = s ꓴ u
 for each vertex v in v-s do
 d[v] = min{ d[u], d[u]+c[u,v]}
 }
}

186

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Key points on Dijkstra’s
algorithm

 Doesn’t work for graphs with negative weights
(whereas Floyd’s algorithm does, as long as
there is no negative cycle).

Efficiency O(|V2|) for graphs represented by weight
matrix and array implementation of priority queue

O(|E|log|V|) for graphs represented by adj. lists and
min-heap implementation of priority queue

Applicable to both undirected and directed graphs.

187

BMS Institute of Technology and Mgmt Department of ISE

MODULE – 4

DYNAMIC PROGRAMMING

188

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Dynamic Programming

Optimization Problem : Problems which demands minimum/maximum

results

 Dynamic “ means “changing”
Programming” means “planning”

Dynamic Programming is a general algorithm design technique
for solving problems with overlapping sub-problems.

 Invented by American mathematician Richard Bellman in the
1950s to solve optimization problems

Main idea:
-Solve smaller instances once.
-Record solutions in a table.
-Get solution to a larger instance from some smaller instances.
-Optimal solution for the initial instance is obtained from that table.

189

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Principle of Optimality

Problems can be solved by taking sequence of

decisions to get optimal solutions

190

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Example: Fibonacci numbers

191

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Example: Fibonacci numbers

192

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 193

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 194

BMS Institute of Technology and Mgmt Department of ISE

Examples of DP algorithms

• Computing a binomial coefficient

• Longest common subsequence

• Warshall’s algorithm for transitive closure

• Floyd’s algorithm for all-pairs shortest paths

• Constructing an optimal binary search tree

• Some instances of difficult discrete optimization problems:

 - traveling salesman
 - knapsack

195

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Multistage Graph

A Multi stage graph G = <V,E> which is a directed graph. In
this graph all the vertices and partitioned into K stages
where K>=2.

In multistage graph problem we have to find the shortest
path from source to sink.

The cost of each path is calculated by using the weight given
along that edge.

In multistage graph can be solved using forward and
backward approach.

196

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 197

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 198

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 199

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 200

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 201

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Warshall’s Algorithm: Transitive Closure

202

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Warshall’s Algorithm: Transitive
Closure

Constructs transitive closure T as the last matrix in the sequence
of n-by-n matrices R(0), … , R(k), … , R(n) where
R(k)[i,j] = 1 iff there is nontrivial path from i to j with only the first
k vertices allowed as intermediate
Note: that R(0) = A (adjacency matrix), R(n)

 = T (transitive closure)

203

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 204

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 205

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 206

BMS Institute of Technology and Mgmt Department of ISE

Warshall’s Algorithm (recurrence)

i

j

k

{

Initial condition?

On the k-th iteration, the algorithm determines for every pair of
vertices i, j if a path exists from i and j with just vertices 1,…,k
allowed as intermediate

R(k-1)[i,j] (path using just 1 ,…,k-1)

 R(k)[i,j] = or
 R(k-1)[i,k] and R(k-1)[k,j] (path from i to k
 and from k to j
 using just 1 ,…,k-1)

207

BMS Institute of Technology and Mgmt Department of ISE

Warshall’s Algorithm (matrix generation)

Recurrence relating elements R(k) to elements of R(k-1) is:

R(k)[i,j] = R(k-1)[i,j] or (R(k-1)[i,k] and R(k-1)[k,j])

It implies the following rules for generating R(k) from R(k-1):

Rule 1 If an element in row i and column j is 1 in R(k-1),
 it remains 1 in R(k)

Rule 2 If an element in row i and column j is 0 in R(k-1),
 it has to be changed to 1 in R(k) if and only if
 the element in its row i and column k and the element
 in its column j and row k are both 1’s in R(k-1)

208

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Warshall’s Algorithm (pseudocode and analysis)

Time efficiency: Θ(n3)

209

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Floyd’s Algorithm: All pairs shortest paths

Problem: In a weighted (di)graph, find shortest paths between
 every pair of vertices

Same idea: construct solution through series of matrices D(0), …,
 D (n) using increasing subsets of the vertices allowed
 as intermediate

Example:

210

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 211

BMS Institute of Technology and Mgmt Department of ISE

Floyd’s Algorithm (matrix generation)

On the k-th iteration, the algorithm determines shortest paths

between every pair of vertices i, j that use only vertices among

1,…,k as intermediate

 D(k)[i,j] = min {D(k-1)[i,j], D(k-1)[i,k] + D(k-1)[k,j]}

i

j

k

D(k-1)[i,j]

D(k-1)[i,k]

D(k-1)[k,j]

Initial condition?

212

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Time efficiency: Θ(n3)

Note: Works on graphs with negative edges but without negative
cycles.

213

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Optimal Binary Search Tree

Binary Tree

214

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

total number of BSTs with n nodes is given

by C(2n,n)/(n+1)

215

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Cost of searching any Key

216

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Cost of BST-Frequencies

18

217

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Optimal Binary Search Tree

Problem: Given n keys a1 < …< an and probabilities p1, …, pn

 searching for them, find a BST with a minimum
 average number of comparisons in successful search.

Since total number of BSTs with n nodes is given by C(2n,n)/(n+1),
which grows exponentially, brute force is not recommended.

218

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Example: What is an optimal BST for keys A, B, C, and D with
 search probabilities 0.1, 0.2, 0.4, and 0.3, respectively?

D

A

B

C
Average # of comparisons

= 1*0.4 + 2*(0.2+0.3) + 3*0.1

= 1.7

219

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Obtain the optimal binary search tree for the
following

(do, if, int, while) with the following
probability(0.1,0.2,0.4,0.3)

220

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 221

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 222

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 223

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 224

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 225

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 226

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 227

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 228

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 229

BMS Institute of Technology and Mgmt Department of ISE

Knapsack Problem

Given n objects of known weights w1,w2…wn and
profit p1, p2, … pn for those n objects and a knapsack
of capacity M i.e is not exceeding the weight M. Let a
variable xi be ‘0’ if we do not select the object ‘i’ or ‘1’
if we include the object ‘i’ into the knapsack.

The objective is to maximize the total profit

earned. Since the knapsack capacity is M, we

require the total weight of all chosen objects to

be at most M.

230

BMS Institute of Technology and Mgmt Department of ISE

Knapsack problem

231

BMS Institute of Technology and Mgmt Department of ISE

For the given instances of problem obtain the

optimal solution for the knapsack problem

The capacity of knapsack is W=5

232

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 233

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 234

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 235

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 236

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 237

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 238

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 239

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 240

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

To find items to be selected

241

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 242

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 243

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Knapsack Problem by DP (pseudocode)

Algorithm DPKnapsack(int: w[1..n], int: p[1..n], M)

 int: V[0..n,0..M]

 for j := 0 to M do

 V[0,j] := 0

 for i := 0 to n do

 V[i,0] := 0

 for i := 1 to n do

 for j := 1 to M do

 if w[i]  j and p[i] + V[i-1,j-w[i]] > V[i-1,j] then

 V[i,j] := p[i] + V[i-1,j-w[i]];

 else

 V[i,j] := V[i-1,j];

 return V[n,M]

Running time and space: O(nW).

244

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt 245

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

246

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

247

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

248

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Memory Function Knapsack

Example: Knapsack of capacity M = 5

item weight value

 1 2 $8

 2 1 $6

 3 3 $16

 4 2 $11 capacity j

 0 1 2 3 4 5

 0

w1 = 2, p1= 8 1

w2 = 1, p2= 6 2

w3 = 3, p3= 16 3

w4 = 2, p4= 11 4 ?

0 0 0 0 0 0

0 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 249

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

i=4, j=5, p[i]=11, wi =2

J-wi = 5-2 = 3 (able to fit into knapsack)

Find V[4,5] = max{ mfk[i-1,j], p[i] + mfk[i-1, j-wi]}

 = max{ mkf(3,5), 11+mfk(3,3)}

 = max{ ---------, 11+ -------)}

Find V[3,5] = max{ mkf(2,5), 16+mfk(2,2)}

 = max{ --------, 16+ -----------}

Memory Function Knapsack

250

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Find V[3,3] = max{ mfk[i-1,j], p[i] + mfk[i-1, j-wi]}

 = max{ mkf(2,3), 16+mfk(2,0)}

 = max{ ----, 16+ -----)}

Find V[2,5] = max{ mkf(1,5), 6+mfk(1,4)}

 = max{ --------, 6+ -----------}

Find V[2,2] = max{ mkf(1,2), 6+mfk(1,1)}

 = max{ --------, 6 + -----------}

Memory Function Knapsack

251

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Find V[2,3] = max{ mkf(1,3), 6+mfk(1,2)}

 = max{ --------, 6 + -----------}

Find V[1,5] = max{ mkf(0,5), 8+mfk(0,3)}

 = max{ 0 , 8 + 0} = 8

Find V[1,4] = max{ mkf(0,4), 8+mfk(0,2)}

 = max{ 0 , 8 + 0} = 8

Find V[1,2] = max{ mkf(0,2), 8+mfk(0,0)}

 = max{ 0 , 8 + 0} = 8

Find V[1,3] = max{ mkf(0,3), 8+mfk(0,0)}

 = max{ 0 , 8 + 0} = 8

Find V[1,1] = max{ mkf(0,1)} = 0

Back

Substitute

these

values

252

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Find V[2,3] = max{ mkf(1,3), 6+mfk(1,2)}

 = max{ 8, 6 + 8} = 14

Find V[1,5] = max{ mkf(0,5), 8+mfk(0,3)}

 = max{ 0 , 8 + 0} = 8

Find V[1,4] = max{ mkf(0,4), 8+mfk(0,2)}

 = max{ 0 , 8 + 0} = 8

Find V[1,2] = max{ mkf(0,2), 8+mfk(0,0)}

 = max{ 0 , 8 + 0} = 8

Find V[1,3] = max{ mkf(0,3), 8+mfk(0,0)}

 = max{ 0 , 8 + 0} = 8

Find V[1,1] = max{ mkf(0,1)} = 0

Back

Substitute

these

values

253

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Find V[3,3] = max{ mfk[i-1,j], p[i] + mfk[i-1, j-wi]}

 = max{ mkf(2,3), 11+mfk(2,0)}

 = max{ 14 , 16+ 0)} = 16

Find V[2,5] = max{ mkf(1,5), 6+mfk(1,4)}

 = max{ 8, 6+ 8} = 14

Find V[2,2] = max{ mkf(1,2), 6+mfk(1,1)}

 = max{ 8, 6 + 0} = 8

Memory Function Knapsack

254

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

 V[i,j] = max{ mfk[i-1,j], p[i] + mfk[i-1, j-wi]}

i=4, j=5, p[i]=11, wi =2

J-wi = 5-2 = 3 (able to fit into knapsack)

Find V[4,5] = max{ mfk[i-1,j], p[i] + mfk[i-1, j-wi]}

 = max{ mkf(3,5), 11+mfk(3,3)}

 = max{ 24 , 11+ 16)} = 27

Find V[3,5] = max{ mkf(2,5), 16+mfk(2,2)}

 = max{ 14, 16+ 8} = 24

Memory Function Knapsack

255

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Memory Function Knapsack

Example: Knapsack of capacity M = 5

item weight value

 1 2 $8

 2 1 $6

 3 3 $16

 4 2 $11 capacity j

 0 1 2 3 4 5

 0

w1 = 2, p1= 8 1

w2 = 1, p2= 6 2

w3 = 3, p3= 16 3

w4 = 2, p4= 11 4 ?

0 0 0 0 0 0

0 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1

0 0 0 0 0 0

0 0 8 8 8 8

0 -1 8 14 -1 14

0 -1 -1 16 -1 24

0 -1 -1 -1 -1 27 256

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Memory Function Knapsack Algo.

ALGORITHM MFKnapsack(i, j) //Implements the memory function method for
the knapsack problem //Input: A nonnegative integer i indicating the number
of the first // items being considered and a nonnegative integer j indicating //
the knapsack capacity //Output: The value of an optimal feasible subset of the
first i items //Note: Uses as global variables input arrays Weights[1..n],
Values[1..n], //and table V[0..n, 0..W]whose entries are initialized with −1’s
except for //row 0 and column 0 initialized with 0’s

 if V[i, j]< 0

 if j<Weights[i] = value←MFKnapsack(i −1,j)

 else value←max,MFKnapsack(i −1, j),

 values[i]+MFKnapsack(i −1, j−Weights*i+)-

 V[i, j+←value

 return V[i, j]
257

BMS Institute of Technology and Mgmt Department of ISE

MODULE – 5

BACKTRACKING

258

Department of ISE BMS Institute of Technology and Mgmt

 Backtracking

Backtrack’ the Word was first introduced by Dr. D.H. Lehmer in
1950s.
• R.J Walker Was the First man who gave algorithmic description
in 1960.
• Later developed by S. Golamb and L. Baumert.

Backtracking technique resembles a depth-first – search
in a directed graph. The graph concerned here is usually
a tree, the aim of backtracking is to search the state
space tree systematically. The aim of the search is to find
solutions to some problems.

259

Department of ISE BMS Institute of Technology and Mgmt

 What is Backtracking?

When the search begins, solution to the problem is unknown.

Each move along an edge of the tree corresponds to adding a

new element to a partial solution, that is to narrowing down the

remaining possibilities for a complex solution.

The search is successful if, a solution can be completely

defined. At this stage an algorithm may terminate or it may

continue for an alternative solution.

The search is unsuccessful if at some stage the partial solution

constructed so far cannot be completed. In this case the search

backtracks like a depth first search, removing elements that

were added at each stage.

260

Department of ISE BMS Institute of Technology and Mgmt

 State Space Tree

In state space tree, root represents an initial state before the

search for a solution begins. The nodes of the first level in the

tree represent the choice made for the first component of a

solution, the nodes of the second level represent the choices for

the second components, and so on. A node in a state space tree

is said to be promising if it corresponds to a partially

constructed solution that may lead to a complete solution;

otherwise a node is said to be non promising.

261

Department of ISE BMS Institute of Technology and Mgmt 262

Department of ISE BMS Institute of Technology and Mgmt

N-Queen Problem

263

Department of ISE BMS Institute of Technology and Mgmt

N Queen Problem

264

Department of ISE BMS Institute of Technology and Mgmt

Constraints

Explicit Constraints: All ‘n’ queens must be placed on the
chessboard in the columns 1,2,3, …. N. Xi belongs to S where S =
{1,2,3, …. N }

Implicit Constraints: In this all Xi Values must be distinct
No two queens can be on the same row
No two queens can be on the same column
No two queens can be on the same diagonal

265

Department of ISE BMS Institute of Technology and Mgmt

Horizontal Attack:

Row wise attacking is avoided by placing 1st queen in
1st row, 2nd queen in 2nd row and so on.
By placing ith queen in ith row, horizontal attacking can
be avoided

266

Department of ISE BMS Institute of Technology and Mgmt

Vertical Attack:

(i, x[i]) means the position of ith queen in row i and
column x[i]
(k, x[k]) means the position of kth queen in row k
and column x[k]
If ith & kth queen are in same column then
X[i] == x[k] --------------- (1)
Hence indicate that queens attack vertically

 (1,1) & (4,1) x[i] == x[k] to be avoided

Q1

Q4

267

Department of ISE BMS Institute of Technology and Mgmt

Diagonal Attack:

Top left corner to bottom right corner: The difference
between row value and column value is same.
 (1,3) & (2,4) |i - x[i]| = |k - x[k]|-------(2) to be
 avoided

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

268

Department of ISE BMS Institute of Technology and Mgmt

Diagonal Attack:

Top right corner to bottom left corner: The difference
between row value and column value is same.
 (1,3) & (3,1) i + x[i] = k + x[k] ------(3) to be
 avoided

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

Using eqn. (2) and (3)
i – k = x[i] - x[k] -----------------(4)
i – k = - x[i] + x[k] ----------------(5)

|i – k| = |x[i] - x[k]| indicates queens attack diagonally.

X[i] == x[k] || abs(i –k) = abs(x[i] – x[k])  two queens
attack each other and cannot be placed.

269

Department of ISE BMS Institute of Technology and Mgmt

Algorithm

270

Department of ISE BMS Institute of Technology and Mgmt

State Space Tree for 4 Queens

271

Department of ISE BMS Institute of Technology and Mgmt

Two Solutions of 4 Queen Problem

272

Department of ISE BMS Institute of Technology and Mgmt

Hamiltonian Cycle

Hamiltonian Path in an undirected graph is a path that visits each vertex exactly
once. A Hamiltonian cycle (or Hamiltonian circuit) is a Hamiltonian Path such that
there is an edge (in graph) from the last vertex to the first vertex of the
Hamiltonian Path. Determine whether a given graph contains Hamiltonian Cycle
or not. If it contains, then print the path. Following are the input and output of
the required function.

Input:
A 2D array graph[V][V] where V is the number of vertices in graph and
graph[V][V] is adjacency matrix representation of the graph. A value graph[i][j] is
1 if there is a direct edge from i to j, otherwise graph[i][j] is 0.

Output:
An array path[V] that should contain the Hamiltonian Path. path[i] should
represent the ith vertex in the Hamiltonian Path. The code should also return
false if there is no Hamiltonian Cycle in the graph.

273

http://en.wikipedia.org/wiki/Hamiltonian_path
http://en.wikipedia.org/wiki/Hamiltonian_path
http://en.wikipedia.org/wiki/Hamiltonian_path

Department of ISE BMS Institute of Technology and Mgmt

Example 2

274

Department of ISE BMS Institute of Technology and Mgmt 275

Department of ISE BMS Institute of Technology and Mgmt

Example

276

Department of ISE BMS Institute of Technology and Mgmt

Hamiltonian Cycle

1

4 3

2
1

2 3 4

3

4

1

Solution

2

Dead end

4 3

2

1

Solution

X[1] =1 X[2] = 0 X[3]=0 X[4]=0

277

Department of ISE BMS Institute of Technology and Mgmt 278

Department of ISE BMS Institute of Technology and Mgmt

for (int i = 1; i <= n; i++)
x[i] = 0;
x[1] = 1;

void HamiltonianMethod(int k) {
while (true) {

NextValue(k, G, x, n);
if (x[k] == 0)
return;

if (k == n) {
for (int i = 1; i <= k; i++)
System.out.print(x[i] + " ");
System.out.println(x[1]);
System.out.println();
found = true;
return;
} else
HamiltonianMethod(k + 1);

}
}

1

2 3 4

3

4

1

Solution

2

Dead end

4 3

2

1

279

Department of ISE BMS Institute of Technology and Mgmt

void NextValue(int k, int G[][], int x[], int n) {
while (true) {
x[k] = (x[k] + 1) % (n + 1);
if (x[k] == 0)
return;
if (G[x[k - 1]][x[k]] != 0) {
int j;
for (j = 1; j < k; j++)
if (x[k] == x[j])
break;
if (j == k)
if ((k < n) || ((k == n) && G[x[n]][x[1]] != 0))
return;
}
}
}

Hamiltonian Cycle

Enter the number of the vertices: 4

If edge between the following vertices
enter 1 else 0:
1 and 2: 1
1 and 3: 1
1 and 4: 1
2 and 3:
1
2 and 4: 0
3 and 4: 1

Solution:
1 2 3 4 1

1 4 3 2 1

280

Department of ISE BMS Institute of Technology and Mgmt

1

2 3 4

3

4

1

Solution

2

Dead end

4 3

2

1

Solution

281

Department of ISE BMS Institute of Technology and Mgmt 282

Department of ISE BMS Institute of Technology and Mgmt

Sum of subsets

283

Department of ISE BMS Institute of Technology and Mgmt

Sum of subsets

284

Department of ISE BMS Institute of Technology and Mgmt

Sum of Subsets
Find a subset of a given set S= {S1, S2, S3, S4, ------ Sn}
Of n +ve integers whose sum is equal to given +ve integer d subject
to the constrains

1. Implicit: All Xi values should be distinct and should belong to

the set S

2. Explicit: optimal solution be 𝑆𝑖𝑘
𝑖=1 = d

Xi of the solution vector is either 1 or 0 depending on weather the
weight Wi is included or not.

285

Department of ISE BMS Institute of Technology and Mgmt

For a node at level i, the left child corresponds to Xi = 1
and the right child to Xi = 0

The bounding function X[X1, X2, X3, -----Xn] = true iff

 𝑊𝑖 𝑋𝑖𝑘
𝑖=1 + 𝑊𝑖𝑛

𝑖=𝑘+1 ≥ 𝑑

X1, X2, -----Xk cannot lead to an promising node if this
condition is not satisfied.

286

Department of ISE BMS Institute of Technology and Mgmt

The bounding function can be strengthened if we
assume that Wi’s are initially in increasing order.

In this case X1 – Xk can not lead to promising node if
X[X1, X2, X3, -----Xn] = true iff

 𝑊𝑖 𝑋𝑖

𝑘

𝑖=1

+𝑊 𝑘 + 1 ≤ 𝑑

X1, X2, -----Xk cannot lead to an promising node if this
condition is not satisfied.
 287

Department of ISE BMS Institute of Technology and Mgmt

Therefore the bounding function will be

 𝑊𝑖 𝑋𝑖𝑘
𝑖=1 + 𝑊𝑖𝑛

𝑖=𝑘+1 ≥ 𝑑

𝑎𝑛𝑑 𝑊𝑖 𝑋𝑖

𝑘

𝑖=1

+𝑊 𝑘 + 1 ≤ 𝑑

288

Department of ISE BMS Institute of Technology and Mgmt

State space tree
0, 1, 21

0, 2, 18 3, 2, 18

3, 3, 13 8, 3, 13

 3, 4, 7 9, 4, 7 8, 4, 7 14, 4, 7

15, 5, 0

Solution

X1=1 X1=0

X2=1 X2=0

X3=1 X3=0 X3=1 X3=0

X4=1

289

Department of ISE BMS Institute of Technology and Mgmt

Sum of subsets

290

Department of ISE BMS Institute of Technology and Mgmt

Sum of subsets

291

Department of ISE BMS Institute of Technology and Mgmt

Sum of subsets

292

Department of ISE BMS Institute of Technology and Mgmt

Coding

for (int i = 1; i <= n; i++)
sum = sum + S[i];
if (sum < d || S[1] > d)
System.out.println("No Subset possible");
else
SumofSub(0, 0, sum);

293

Department of ISE BMS Institute of Technology and Mgmt

static void SumofSub(int i, int weight, int total) {
if (promising(i, weight, total) == true)
if (weight == d) {
for (int j = 1; j <= i; j++) {
if (soln[j] == 1)
System.out.print(S[j] + " ");
}
System.out.println();
} else {
soln[i + 1] = 1;
SumofSub(i + 1, weight + S[i + 1], total - S[i + 1]);
soln[i + 1] = 0;
SumofSub(i + 1, weight, total - S[i + 1]);
}
}

294

Department of ISE BMS Institute of Technology and Mgmt

static boolean promising(int i, int weight, int
total) {
return ((weight + total >= d) && (weight == d ||
weight + S[i + 1] <= d));

295

Department of ISE BMS Institute of Technology and Mgmt

Graph Coloring

296

Department of ISE BMS Institute of Technology and Mgmt 297

Department of ISE BMS Institute of Technology and Mgmt 298

Department of ISE BMS Institute of Technology and Mgmt

Graph Coloring

299

Department of ISE BMS Institute of Technology and Mgmt

Graph Coloring

300

Department of ISE BMS Institute of Technology and Mgmt

Branch and Bound
The term Branch means the way in which we search the
state space tree and Bound means assigning bounding
function at each node. This bounding function is used to
prevent the expansion of nodes that cannot possibly
lead to an answer node.

Basically there are two methods used in branch and
bound technique.

1. FIFO based Branch & Bound
2. In this method, the live node form a queue (FIFO

Structure) & each live node will be taken from the
queue and next live node is selected.

301

Department of ISE BMS Institute of Technology and Mgmt

 Branch and Bound

Least Cost Branch and Bound
At each node, an intelligent ranking function is used to
assign a value to that node. The next live node is
selected on the basis of the least cost.

Travelling sales man problem, a sales man must visit n
cities. The sales man visits each city exactly once and
comes back to the starting city.

The travelling sales man problem is minimization
problem and hence we require to find the lower bound.

302

Department of ISE BMS Institute of Technology and Mgmt

Example 1

Assignment Problem : given n jobs <j1,j2,--- jn> and n persons
<p1,p2,p3 ---pn>, it is required to assign all n jobs to all n persons
with the constraint that one job has to be assigned to one person
and the cost involved in completing all the jobs should be
minimum.

J1 J2 j3 j4

A 9 2 7 8

B 6 4 3 7

C 5 8 1 8

D 7 6 9 4

303

Department of ISE BMS Institute of Technology and Mgmt

Example 1

J1 J2 j3 j4

A 9 2 7 8

B 6 4 3 7

C 5 8 1 8

D 7 6 9 4

2

3

1

4

Take minimum in each row

 10

a  J1 a  J2 a  J3 a  J4

9 2 7 8

3 3 4 3

8 5 5 5

4 4 4 6

24 14 20 22

a

b

c

d

304

Department of ISE BMS Institute of Technology and Mgmt

Example 1

J1 J2 J3 J4

A 9 2 7 8

B 6 4 3 7

C 5 8 1 8

D 7 6 9 4

2

3

1

4

Take minimum in each row

 10

b  J1 b  J3 b  J4

2 2 2

6 3 7

1 5 1

4 4 7

13 14 17

a

b

c

d

305

Department of ISE BMS Institute of Technology and Mgmt

Example 1

J1 J2 J3 J4

A 9 2 7 8

B 6 4 3 7

C 5 8 1 8

D 7 6 9 4

2

3

1

4

Take minimum in each row

 10

C  J3 C  J4

2 2

6 6

1 8

4 9

13 25

a

b

c

d

 C  J4

2

6

1

4

13

a

b

c

d

306

Department of ISE BMS Institute of Technology and Mgmt

Start

Lb=10

a –> J4

Lb=22

a –> J3

Lb=20

a – >J2

Lb=14

a –> J1

Lb=24

b –> J1

Lb=13

b –> J3

Lb=14

c –> J4

Lb=17

c –> J3

Lb=13

c –> J4

Lb=25

d –> J4

Lb=13

307

Department of ISE BMS Institute of Technology and Mgmt

Example 2

J1 J2 j3 j4

A 10 3 8 9

B 7 5 4 8

C 6 9 2 9

D 8 7 10 5

308

Department of ISE BMS Institute of Technology and Mgmt

Knapsack Problem

Knapsack Problem: Given n items of known weights wi and values vi, i=1, 2, . . . ,
n,and a knapsack of capacity W, find the most valuable subset of the items that
fit in the knapsack. It is convenient to order the items of a given instance in
descending order by their value-to-weight ratios. Then the first item gives the
best payoff per weight unit and the last one gives the worst payoff per weight
unit

309

Department of ISE BMS Institute of Technology and Mgmt

First arrange in V/W in decreasing order
Since it is a maximization problem. The upper bound is calculated
using the function

i =0 , v=0, w=0 v i+1/wi+1 = 10
Ub = 0 + (10) 10 = 100

310

Department of ISE BMS Institute of Technology and Mgmt

w=0. v=0

Ub = 100

With item 1
i =1, w=4. v=40, v i+1/wi+1 = 6

Ub = v + (W-w)(v i+1/wi+1)
 = 40 + 6. 6
 = 76

Without item 1
i =1, w=0. v=0, v i+1/wi+1 = 6

Ub = v + (W-w)(v i+1/wi+1)
 = 0 + 10 . 6
 = 60

With item 2
i =2, w=7. v=42, v i+1/wi+1 = 5

Ub = v + (W-w)(v i+1/wi+1)
 = 42 + (10 – 11) . 5
 = Not Feasible

With out item 2
i =2, w=0+4. v=40+0, v i+1/wi+1 =
5

Ub = v + (W-w)(v i+1/wi+1)
 = 40 + 6. 5
 = 70

311

Department of ISE BMS Institute of Technology and Mgmt

w=0. v=0

Ub = 100

With item 3
i =3, w=5+4. v=40+25, v i+1/wi+1 = 4

Ub = v + (W-w)(v i+1/wi+1)
 = 65 + 1. 4
 = 69

Without item 3
i =3, w=4+0. v=40+0, v i+1/wi+1 = 4

Ub = v + (W-w)(v i+1/wi+1)
 = 40 + 6 . 4
 = 64

With item 4
i =4, w=9+3 =12.

Ub = v + (W-w)(v i+1/wi+1)
 = Not Feasible

With out item 4
i =4, w=0+9. v=65+0, v i+1/wi+1 = 1

Ub = v + (W-w)(v i+1/wi+1)
 = 65 + 1. 1
 = 66

312

Department of ISE BMS Institute of Technology and Mgmt

w=0. v=0

Ub = 100

With item 1
i =1, w=4. v=40, v i+1/wi+1 = 6

= 76

Without item 2
i =1, w=0. v=0, v i+1/wi+1 = 6

= 60

With item 2
i =2, w=7. v=42, v i+1/wi+1 = 5

= Not Feasible

With out item 2
i =2, w=0+4. v=40+0, v i+1/wi+1 = 5

= 70

With item 3
i =3, w=5+4. v=40+25, v i+1/wi+1 = 4

= 69

Without item 3
i =3, w=4+0. v=40+0, v i+1/wi+1 = 4

= 64

With item 4
i =4, w=9+3 =12.

Not Feasible

With out item 4
i =4, w=0+9. v=65+0, v i+1/wi+1 = 0

= 65

313

Department of ISE BMS Institute of Technology and Mgmt

Travelling Sales Person Problem

a

b c

d
4

2

5

3

1

1

In the travelling sales man problem, a sales man must visit n
cities. The sales man visits each city exactly once and comes
back to the starting city.
The travelling sales man problem is minimization problem
and hence we require to find the lower bound.

Lower bound = lb = S / 2;
Where S = [Va+ Vb+Vc+Vd]
Va = sum of distances from vertex a to the nearest
vertices 1 + 3 = 4
Vb = 1+3 = 4
Vc = 1+2= 3
Vd = 1+2 = 3
Lb = [4 +4 +3+3] / 2 = 14 / 2 = 7

314

Department of ISE BMS Institute of Technology and Mgmt

Now find,
a  b = (3+1)+(3+1)+(1+2)+(1+2) = 14/ 2 = 7
a  c = (1+3)+(3+1)+(1+2)+(1+2) = 14/ 2 = 7
a  d = (4+1)+(1+3)+(1+2)+(4+1) = 17/2 = 8

Start

Lb=7

a –> d

Lb=8
a – > c

Lb=7

a –> b

Lb=7

315

Department of ISE BMS Institute of Technology and Mgmt

Now find,
b  c = (3+1)+(5+1)+(5+1)+(1+2) = 19/ 2 = 9
b  d = (1+3)+(1+3)+(1+2)+(1+2) = 14/ 2 = 7
c  b = (1+3)+(5+1)+(5+1)+(1+2) = 19/2 = 9
c  d = (1+3)+(3+1)+(2+1)+(2+1) = 14/ 2 = 7

Start

Lb=7

a –> d

Lb=8
a – > c

Lb=7

a –> b

Lb=7

c –> d

 Lb=7
b – > d

 Lb=7

b –> c

 Lb=9

c –> b

 Lb=9

316

Department of ISE BMS Institute of Technology and Mgmt

Now find,
d  c = (1+3)+(1+3)+(2+1)+(1+2) = 14/2 = 7
d  b = (1+3)+(1+3)+(1+2)+(1+2) = 14/2 = 7
c  a = (1+3)+(1+3)+(1+2)+(1+2) = 14/2 = 7
b  a = (3+1)+(3+1)+(1+2)+(1+2) = 14/2 = 7

Start

Lb=7

a –> d

Lb=8

a – > c

Lb=7

a –> b

Lb=7

a –> c  d

 Lb=7

a b –> d

 Lb=7

a b –> c

 Lb=9

a c –> b

 Lb=9

a b – > d  c

 Lb=7

a c  d – > b

 Lb=7

a b – > d  c

 Lb=7

a c  d – > b

 Lb=7

317

Department of ISE BMS Institute of Technology and Mgmt

Thank you

24-08-2020 318

